Question

Exact answer/fraction

Evaluate \(\int_{C} \mathrm{~F} \cdot d \mathbf{r}\) using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results.

$$ \int_{C}[4(2 x+7 y) \mathbf{i}+14(2 x+7 y) \mathbf{j}] \cdot d \mathbf{r} $$

C: smooth curve from \((-7,2)\) to \((3,2)\)


Evaluate \(\int_{C} \mathrm{~F} \cdot d \mathbf{r}\) using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results.

$$ \int_{C} \cos (x) \sin (y) d x+\sin (x) \cos (y) d y $$

C: line segment from \((0,-\pi)\) to \(\left(\frac{3 \pi}{2}, \frac{\pi}{2}\right)\)

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Exact answer/fraction
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Find for the given F and C

    Find \(\int_{C} \vec{F} \cdot d r\) for the given \(\vec{F}\) and \(C\).\(\cdot \vec{F}=-y \vec{i}+x \vec{j}+7 \vec{k}\) and \(C\) is the helix \(x=\cos t, y=\sin t r \quad z=t\), for \(0 \leq t \leq 2 \pi .\)$$ \int_{C} \vec{F} \cdot d \vec{r}= $$Find \(\int_{C} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}\) for \(\overrightarrow{\mathrm{F}}=e^{y} \overrightarrow{\mathrm{i}}+\ln \left(x^{2}+1\right) \overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}}\) and \(C\), the circle of radius 4 centered at the origin in the \(y z\)-plane as shown below.$$ \int_{C} \vec{F} \cdot d \vec{r}= $$

  • value of z= 96 Task 3: Answer the following

    value of z= 96Task 3: Answer the following:a. Evaluate: \(\int_{\frac{\pi}{2}}^{\pi} \boldsymbol{Z} \cos ^{3}(x) \sin ^{2}(x) d x\)b. The moment of inertia, \(I\), of \(a\) rod of mass ' \(m^{\prime}\) and length \(4 r\) is given by \(I=\int_{0}^{4 r}\left(\frac{Z m x^{2}}{2 r}\right) d x\) where \(^{\prime} x^{\prime}\) is the distance from an axis of rotation. Find \(I \)Task 4: Answer the following:Using the Trapezoidal rule, find the approximate the area bounded by the curve\(y=\boldsymbol{Z} e^{\left(\frac{x}{2}\right)}\), the \(\mathrm{x}\) -axis and coordinates \(x=0,...

  • Use the Divergence Theorem to evaluate

    Use the Divergence Theorem to evaluate \(\iint_{S} \mathbf{F} \cdot d \mathbf{S}\), where \(\mathbf{F}(x, y, z)=z^{2} x \mathbf{i}+\left(\frac{y^{3}}{3}+\cos z\right) \mathbf{j}+\left(x^{2} z+y^{2}\right) \mathbf{k}\) and \(S\) is the top half of the sphere \(x^{2}+y^{2}+z^{2}=4\). (Hint: Note that \(S\) is not a closed surface. First compute integrals over \(S_{1}\) and \(S_{2}\), where \(S_{1}\) is the disk \(x^{2}+y^{2} \leq 4\), oriented downward, and \(S_{2}=S_{1} \cup S\).)

  • PLEASE ANSWER ALL FIVE PROBLEMS

    Find \(\mathrm{dy} / \mathrm{dt}\).12) \(y=\cos ^{5}(\pi t-8)\)A) \(-5 \pi \cos ^{4}(\pi t-8) \sin (\pi t-8)\)B) \(-5 \cos ^{4}(\pi \mathrm{t}-8) \sin (\pi \mathrm{t}-8)\)C) \(5 \cos ^{4}(\pi t-8)\)D) \(-5 \pi \sin ^{4}(\pi t-8)\)Use implicit differentiation to find dy/dx.13) \(x y+x=2\)A) \(-\frac{1+y}{x}\)B) \(\frac{1+y}{x}\)C) \(\frac{1+x}{y}\)D) \(-\frac{1+x}{y}\)Find the derivative of \(y\) with respect to \(x, t\), or \(\theta\), as appropriate.14) \(y=\ln 8 x^{2}\)A) \(\frac{2}{x}\)B) \(\frac{1}{2 x+8}\)C) \(\frac{2 x}{x^{2}+8}\)D) \(\frac{16}{x}\)Find the derivative of \(\mathrm{y}\) with respect to \(\mathrm{x}, \mathrm{t}\), or \(\theta\), as appropriate.15) \(y=\left(x^{2}-2 x+6\right) e^{x}\)A)...

  • Let F(x, y, z) = sin yi + (x cos y + cos z)j – ysin...

    Let F(x, y, z) = sin yi + (x cos y + cos z)j – ysin zk be a vector field in R3. (a) Verify that F is a conservative vector field. (b) Find a potential function f such that F = Vf. (C) Use the fundamental theorem of line integrals to evaluate ScF. dr along the curve C: r(t) = sin ti + tj + 2tk, 0 < t < A/2.

  • An object moves though a vector field.

    1. ( 8 points) An object moves though a vector field, \(\overrightarrow{\mathbf{F}}(x, y)\), along a circular path, \(\overrightarrow{\mathbf{r}}(t)\), starting at \(P\) and ending at \(Q\) as shown in the graph below.(a) At the point \(R\) draw and label a tangent vector in the direction of \(d \overrightarrow{\mathbf{r}}\).(b) At the point \(R\) draw and label a vector in the direction of the vector filed, \(\overrightarrow{\mathbf{F}}(R)\).(c) At the point \(R\) is \(\overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}\) positive, negative, or zero? Circle the correct...

  • Evaluete the line integral using the Fundamental Theorem of Line Integrats

    Evaluete the line integral using the Fundamental Theorem of Line Integrats. Use a computer atgebra system to verify your results.$$ \int_{c}(2 yi+2 xj)=d r $$Ci smooth curve from \((0,0)\) to \((2,7)\).

  • Use a parametrization to find the flux

    Use a parametrization to find the flux\(\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{d} \sigma\)of the field \(\mathbf{F}=\frac{9 x \mathbf{i}+9 y \mathbf{j}+9 z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\) across the portion of the sphere \(x^{2}+y^{2}+z^{2}=25\) in the first octant in the direction away from the origin.The flux is _______ 

  • Question 1. Determine whether or not

    Question 1. Determine whether or not \(\mathrm{F}(x, y)=e^{x} \sin y \mathbf{i}+e^{x} \cos y_{\mathbf{j}}\) is a conservative field. If it is, find its potential function \(f\).Question 2. Find the curl and the divergence of the vector field \(\mathbf{F}=\sin y z \mathbf{i}+\sin z x \mathbf{j}+\sin x y \mathbf{k}\)Question 3. Find the flux of the vector field \(\mathbf{F}=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}\) across the surface \(r(u, v)=\langle u \cos v, u \sin v, v\rangle, 0 \leq u \leq 1,0 \leq v \leq \pi\) with...

  • Given Show that

    Given$$ \vec{F}(x, y)=\left\langle\frac{2 x^{3}+2 x y^{2}-2 y}{x^{2}+y^{2}}, \frac{2 y^{3}+2 x^{2} y+2 x}{x^{2}+y^{2}}\right\rangle $$Show that \(\int_{C} \vec{F} \cdot d \vec{r}=4 \pi\) for any positively oriented simple closed curve that encloses the origin.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT