Question

value of z= 96

of 7 a C 88 > Task 3: Answer the following: a. Evaluate: 57% z cos(x) sin?(x) dx (10 Marks) 2 b. The moment of inertia, I, of

Task 3: Answer the following:

a. Evaluate: \(\int_{\frac{\pi}{2}}^{\pi} \boldsymbol{Z} \cos ^{3}(x) \sin ^{2}(x) d x\)

b. The moment of inertia, \(I\), of \(a\) rod of mass ' \(m^{\prime}\) and length \(4 r\) is given by \(I=\int_{0}^{4 r}\left(\frac{Z m x^{2}}{2 r}\right) d x\) where \(^{\prime} x^{\prime}\) is the distance from an axis of rotation. Find \(I \)

Task 4: Answer the following:

Using the Trapezoidal rule, find the approximate the area bounded by the curve

\(y=\boldsymbol{Z} e^{\left(\frac{x}{2}\right)}\), the \(\mathrm{x}\) -axis and coordinates \(x=0, x=6 .\) Consider \(n=20 .\) Also, find the

accurate area of the above curve using integration and compare the areas found by

Trapezoidal and analytical integration methods. \(\quad\)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
value of z= 96 Task 3: Answer the following
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Z=61 Task 3: Answer the following: a. Evaluate: Siz cos(x) sin?(x) dx (10 Marks) b. The...

    Z=61 Task 3: Answer the following: a. Evaluate: Siz cos(x) sin?(x) dx (10 Marks) b. The moment of inertia, I, of a rod of mass 'm' and length 4r is given by Ar (2mx? dx where 'x' is the distance from an axis of rotation. Find I. (5 Marks) 2r Task 4: Answer the following: Using the Trapezoidal rule, find the approximate the area bounded by the curve y = ze), the x-axis and coordinates x = 0, x =...

  • Exact answer/fraction

    Evaluate \(\int_{C} \mathrm{~F} \cdot d \mathbf{r}\) using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results.$$ \int_{C}[4(2 x+7 y) \mathbf{i}+14(2 x+7 y) \mathbf{j}] \cdot d \mathbf{r} $$C: smooth curve from \((-7,2)\) to \((3,2)\)Evaluate \(\int_{C} \mathrm{~F} \cdot d \mathbf{r}\) using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results.$$ \int_{C} \cos (x) \sin (y) d x+\sin (x) \cos (y) d y $$C: line segment from \((0,-\pi)\) to \(\left(\frac{3 \pi}{2},...

  • Find for the given F and C

    Find \(\int_{C} \vec{F} \cdot d r\) for the given \(\vec{F}\) and \(C\).\(\cdot \vec{F}=-y \vec{i}+x \vec{j}+7 \vec{k}\) and \(C\) is the helix \(x=\cos t, y=\sin t r \quad z=t\), for \(0 \leq t \leq 2 \pi .\)$$ \int_{C} \vec{F} \cdot d \vec{r}= $$Find \(\int_{C} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}\) for \(\overrightarrow{\mathrm{F}}=e^{y} \overrightarrow{\mathrm{i}}+\ln \left(x^{2}+1\right) \overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}}\) and \(C\), the circle of radius 4 centered at the origin in the \(y z\)-plane as shown below.$$ \int_{C} \vec{F} \cdot d \vec{r}= $$

  • Wave problem

    Find the solution \(\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})\) for the wave problem on a string of length \(\boldsymbol{L}=\pi\) with \(c^{2}=1\) and conditions given by:\(\left\{\begin{array}{l}u(0, t)=0, u(\pi, t)=0, \quad t>0 \\ u(x, 0)=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=\sin x, 0<x<\pi\end{array}\right.\)

  • PLEASE ANSWER ALL FIVE PROBLEMS

    Find \(\mathrm{dy} / \mathrm{dt}\).12) \(y=\cos ^{5}(\pi t-8)\)A) \(-5 \pi \cos ^{4}(\pi t-8) \sin (\pi t-8)\)B) \(-5 \cos ^{4}(\pi \mathrm{t}-8) \sin (\pi \mathrm{t}-8)\)C) \(5 \cos ^{4}(\pi t-8)\)D) \(-5 \pi \sin ^{4}(\pi t-8)\)Use implicit differentiation to find dy/dx.13) \(x y+x=2\)A) \(-\frac{1+y}{x}\)B) \(\frac{1+y}{x}\)C) \(\frac{1+x}{y}\)D) \(-\frac{1+x}{y}\)Find the derivative of \(y\) with respect to \(x, t\), or \(\theta\), as appropriate.14) \(y=\ln 8 x^{2}\)A) \(\frac{2}{x}\)B) \(\frac{1}{2 x+8}\)C) \(\frac{2 x}{x^{2}+8}\)D) \(\frac{16}{x}\)Find the derivative of \(\mathrm{y}\) with respect to \(\mathrm{x}, \mathrm{t}\), or \(\theta\), as appropriate.15) \(y=\left(x^{2}-2 x+6\right) e^{x}\)A)...

  • 5. High accuracy Differentiation formulas. Using Taylor series.

    5. High accuracy Differentiation formulas. Using Taylor series.(a) Prove the following centered finite difference formula that is \(\mathrm{O}\left(\mathrm{h}^{4}\right)\) for the first derivative$$ f^{\prime}\left(x_{i}\right)=\frac{-f\left(x_{i+2}\right)+8 f\left(x_{i+1}\right)-8 f\left(x_{i}-1\right)+f\left(x_{i-2}\right)}{12 h}+O\left(h^{4}\right) $$(b) Compute the centered finite difference approximation of \(\mathrm{O}\left(\mathrm{h}^{2}\right)\) and \(\mathrm{O}\left(\mathrm{h}^{4}\right)\) for the first derivative of \(y=\sin x\) at \(x=\pi / 4\) using the value of \(h=\pi / 12\). Calculate the true percent relative error in both cases.

  • Consider the heat conduction problem

    5. If \(f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ x & 0<x<2\end{array} \quad\right.\)is periodio of period 4 , and whose Fourier series is given by \(\frac{a_{0}}{2}+\sum_{n=1}^{2}\left[a_{n} \cos \left(\frac{n \pi}{2} x\right)+b_{n} \sin \left(\frac{n \pi}{2} x\right)\right], \quad\) find \(a_{n}\)A. \(\frac{2}{n^{2} \pi^{2}}\)B. \(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\)C. \(\frac{4}{n^{2} \pi^{2}}\)D. \(\frac{2}{n \pi}\)\(\mathbf{E}_{1} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}}\)F. \(\frac{4}{n \pi}\)6. Let \(f(x)-2 x-l\) on \([0,2]\). The Fourier sine series for \(f(x)\) is \(\sum_{w}^{n} b_{n} \sin \left(\frac{n \pi}{2} x\right)\), What is \(b, ?\)A. \(\frac{4}{3 \pi}\)B. \(\frac{2}{\pi}\)C. \(\frac{4}{\pi}\)D. \(\frac{-4}{3 \pi}\)E. \(\frac{-2}{\pi}\)F. \(\frac{-4}{\pi}\)7. Let \(f(x)\) be periodic...

  • Given Show that

    Given$$ \vec{F}(x, y)=\left\langle\frac{2 x^{3}+2 x y^{2}-2 y}{x^{2}+y^{2}}, \frac{2 y^{3}+2 x^{2} y+2 x}{x^{2}+y^{2}}\right\rangle $$Show that \(\int_{C} \vec{F} \cdot d \vec{r}=4 \pi\) for any positively oriented simple closed curve that encloses the origin.

  • 1-Given the function:

    1-Given the function: \(y=\frac{x^{2}-3 x-4}{x^{2}-5 x+4}\), decide if \(f(x)=y\) is continuous or has a removable discontinuity, and find horizontal tond vertical asymptotes.2 A-Use the definition \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\) to prove that derivative of \(f(x)=\sqrt{4-x}\) is \(\frac{-1}{2 \sqrt{4-x}}\)2 B- Evaluate the limit \(\lim _{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}\) for the given value of \(x\) and function \(f(x) .\)$$ f(x)=\sin x, \quad x=\frac{\pi}{4} $$3-Given the function: \(y=(x+4)^{3}(x-2)^{2}\), find y' and classify critical numbers very carefully using first derivative tess...

  • Question from Mastering Physics

    A hollow cylinder of radius r and height h has a total charge q uniformly distributed over its surface. The axis of the cylinder coincides with the z-axis, and the cylinder is centered at the origin, as shown in the figure.What is the electric potential V at the origin?$$ V=\frac{q}{2 \pi \epsilon_{0} h} \ln \left(\frac{2 r}{h}-\sqrt{1+\frac{4 r^{2}}{h^{2}}}\right) $$$$ V=\frac{q}{2 \pi \epsilon_{0} h} \ln \left(\frac{h}{2 r}-\sqrt{1+\frac{h^{2}}{4 r^{2}}}\right) $$$$ V=\frac{q}{2 \pi \epsilon_{0} h} \ln \left(\frac{2 r}{h}+\sqrt{1+\frac{4 r^{2}}{h^{2}}}\right) $$$$ V=\frac{q}{2 \pi \epsilon_{0} h}...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT