Question

Wave problem

Q2.PNG

Find the solution \(\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})\) for the wave problem on a string of length \(\boldsymbol{L}=\pi\) with \(c^{2}=1\) and conditions given by:

\(\left\{\begin{array}{l}u(0, t)=0, u(\pi, t)=0, \quad t>0 \\ u(x, 0)=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=\sin x, 0<x<\pi\end{array}\right.\)

8 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Wave problem
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the heat conduction problem

    5. If \(f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ x & 0<x<2\end{array} \quad\right.\)is periodio of period 4 , and whose Fourier series is given by \(\frac{a_{0}}{2}+\sum_{n=1}^{2}\left[a_{n} \cos \left(\frac{n \pi}{2} x\right)+b_{n} \sin \left(\frac{n \pi}{2} x\right)\right], \quad\) find \(a_{n}\)A. \(\frac{2}{n^{2} \pi^{2}}\)B. \(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\)C. \(\frac{4}{n^{2} \pi^{2}}\)D. \(\frac{2}{n \pi}\)\(\mathbf{E}_{1} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}}\)F. \(\frac{4}{n \pi}\)6. Let \(f(x)-2 x-l\) on \([0,2]\). The Fourier sine series for \(f(x)\) is \(\sum_{w}^{n} b_{n} \sin \left(\frac{n \pi}{2} x\right)\), What is \(b, ?\)A. \(\frac{4}{3 \pi}\)B. \(\frac{2}{\pi}\)C. \(\frac{4}{\pi}\)D. \(\frac{-4}{3 \pi}\)E. \(\frac{-2}{\pi}\)F. \(\frac{-4}{\pi}\)7. Let \(f(x)\) be periodic...

  • Solve Laplace's equation

    Solve Laplace's equation, \(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x<a, 0<y<b\), (see (1) in Section 12.5) for a rectangular plate subject to the given boundary conditions.$$ \begin{gathered} \left.\frac{\partial u}{\partial x}\right|_{x=0}=u(0, y), \quad u(\pi, y)=1 \\ u(x, 0)=0, \quad u(x, \pi)=0 \\ u(x, y)=\square+\sum_{n=1}^{\infty}(\square \end{gathered} $$

  • Bivariate normal distribution

    Problem \(1 \quad\) Bivariate normal distributionAssume that \(\boldsymbol{X}\) is a bivariate normal random variable with$$ \boldsymbol{\mu}=E \boldsymbol{X}=\left(\begin{array}{l} 0 \\ 2 \end{array}\right) \quad \text { and } \quad \Sigma=\operatorname{Cov} \boldsymbol{X}=\left(\begin{array}{ll} 3 & 1 \\ 1 & 3 \end{array}\right) $$Let$$ \boldsymbol{Y}=\left(\begin{array}{l} Y_{1} \\ Y_{2} \end{array}\right)=\left(\begin{array}{lr} 1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2} \end{array}\right) \boldsymbol{X} $$a) Find the mean vector and covariance matrix of \(Y\). What is the distribution of \(Y ?\) Are \(Y_{1}\) and...

  • value of z= 96 Task 3: Answer the following

    value of z= 96Task 3: Answer the following:a. Evaluate: \(\int_{\frac{\pi}{2}}^{\pi} \boldsymbol{Z} \cos ^{3}(x) \sin ^{2}(x) d x\)b. The moment of inertia, \(I\), of \(a\) rod of mass ' \(m^{\prime}\) and length \(4 r\) is given by \(I=\int_{0}^{4 r}\left(\frac{Z m x^{2}}{2 r}\right) d x\) where \(^{\prime} x^{\prime}\) is the distance from an axis of rotation. Find \(I \)Task 4: Answer the following:Using the Trapezoidal rule, find the approximate the area bounded by the curve\(y=\boldsymbol{Z} e^{\left(\frac{x}{2}\right)}\), the \(\mathrm{x}\) -axis and coordinates \(x=0,...

  • Solve Laplace's equation on

    Solve Laplace's equation on \(-\pi \leq x \leq \pi\) and \(0 \leq y \leq 1\),$$ \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 $$subject to periodic boundary conditions in \(x\),$$ \begin{aligned} u(-\pi, y) &=u(\pi, y) \\ \frac{\partial u}{\partial x}(-\pi, y) &=\frac{\partial u}{\partial x}(\pi, y) \end{aligned} $$and the Dirichlet conditions in \(y\),$$ u(x, 0)=h(x), \quad u(x, 1)=0 $$

  • Partial Differential Equation - Wave equation : Vibrating spring Question 2 A plucked string, Figure 2 shows the initial position function f (x) for a stretched string (of length L) that is set in mot...

    Partial Differential Equation - Wave equation : Vibrating spring Question 2 A plucked string, Figure 2 shows the initial position function f (x) for a stretched string (of length L) that is set in motion by moving t at midpoint x =-aside the distance-bL and releasing it from rest timet- 0. f (x) bL Figure 2 (a) If the length of string is 10cm with amplitude 5cm was set initially, state the initial condition and the boundary conditions for the...

  • Transform the following IBVP into a problem with homogeneous boundary conditions.

    Transform the following IBVP into a problem with homogeneous boundary conditions.$$ \begin{array}{l} u_{t t}=u_{x x}, \quad 0<x<1, t=>0 \\ a u(0, t)+b u_{x}(0, t)=f_{1}(t) \quad \text { and } \quad c u(1, t)+d u_{x}(1, t)=f_{2}(t), \quad t>0 \\ u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x), \quad 0<x<1 \end{array} $$where \(a, b, c\) and \(d\) are constants.

  • Solve the following initial value problem using Fourier transform

    (25 marks) Solve the following initial value problem using Fourier transform.$$ \begin{array}{l} u_{t}=u_{x x}, \quad-\infty< x <\infty,  t= >0 \\ u(x, 0)=\left(1-2 x^{2}\right) e^{-4 x^{2}}, \quad-\infty< x <\infty \end{array} $$with \(u(x, t) \rightarrow 0\) and \(u_{x}(x, t) \rightarrow 0\) as \(x \rightarrow \pm \infty\).

  • The vibration of a semi-infinite string is described by the following initial boundary value problem.

    (35 marks) The vibration of a semi-infinite string is described by the following initial boundary value problem.(35 marks) The vibration of a semi-infinite string is described by the following initial boundary value problem.$$ \begin{array}{l} u_{t t}=c^{2} u_{x x}, \quad 0< x < \infty, t>0 \\ u(x, 0)=A e^{-\alpha x} \quad \text { and } \quad u_{t}(x, 0)=0, \quad 0< x < \infty \\ u(0, t)=A \cos \omega t, \quad t>0 \\ \lim _{x \rightarrow \infty} u(x, t)=0, \quad \lim _{x...

  • Problem 1. Consider the vibration of a string with two ends fixed. In addition, assume that the s...

    parts a,b, c Problem 1. Consider the vibration of a string with two ends fixed. In addition, assume that the string is initially at rest. The initial boundary value problem (IBVP) is written as u(0,t) -u(1,t) u(x,0) = f(x), 0 ut (z, 0-0, 0 < x < 1. The solution of this IBVP using the method of separation of variables is given by n-l a) Find the coefficients bn. b) Show that this wave function can be written as the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT