Question

Solve the following initial value problem using Fourier transform

image.png

(25 marks) Solve the following initial value problem using Fourier transform.

$$ \begin{array}{l} u_{t}=u_{x x}, \quad-\infty< x <\infty,  t= >0 \\ u(x, 0)=\left(1-2 x^{2}\right) e^{-4 x^{2}}, \quad-\infty< x <\infty \end{array} $$

with \(u(x, t) \rightarrow 0\) and \(u_{x}(x, t) \rightarrow 0\) as \(x \rightarrow \pm \infty\).

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Solve the following initial value problem using Fourier transform
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • The vibration of a semi-infinite string is described by the following initial boundary value problem.

    (35 marks) The vibration of a semi-infinite string is described by the following initial boundary value problem.(35 marks) The vibration of a semi-infinite string is described by the following initial boundary value problem.$$ \begin{array}{l} u_{t t}=c^{2} u_{x x}, \quad 0< x < \infty, t>0 \\ u(x, 0)=A e^{-\alpha x} \quad \text { and } \quad u_{t}(x, 0)=0, \quad 0< x < \infty \\ u(0, t)=A \cos \omega t, \quad t>0 \\ \lim _{x \rightarrow \infty} u(x, t)=0, \quad \lim _{x...

  • Solve the following initial boundary value problem using Laplace transform.

    Solve the following initial boundary value problem using Laplace transform.$$ \begin{aligned} u_{t} &=u_{x x}+t e^{-\pi^{2} t} \sin (\pi x), & 0<x<1, t="">0 \\ u(0, t)=0, & u(1, t)=0, & t>0 & \\ u(x, 0) &=\sin (2 \pi x) & & \end{aligned} $$

  • Transform the following IBVP into a problem with homogeneous boundary conditions.

    Transform the following IBVP into a problem with homogeneous boundary conditions.$$ \begin{array}{l} u_{t t}=u_{x x}, \quad 0<x<1, t=>0 \\ a u(0, t)+b u_{x}(0, t)=f_{1}(t) \quad \text { and } \quad c u(1, t)+d u_{x}(1, t)=f_{2}(t), \quad t>0 \\ u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x), \quad 0<x<1 \end{array} $$where \(a, b, c\) and \(d\) are constants.

  • Use the Laplace transform to solve the given initial-value problem.

    Use the Laplace transform to solve the given initial-value problem.$$ y^{\prime}+y=f(t), \quad y(0)=0, \text { where } f(t)=\left\{\begin{array}{rr} 0, & 0 \leq t<1 \\ 5, & t \geq 1 \end{array}\right. $$

  • use the method of separation of variables to solve the following nonhomogeneous initial-Neumann problem: Hint: write...

    use the method of separation of variables to solve the following nonhomogeneous initial-Neumann problem: Hint: write the candidate solution as are the eigenfunctionsof the eigenvalue problem associated with the homogeneous equation.

  • Consider the heat conduction problem

    5. If \(f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ x & 0<x<2\end{array} \quad\right.\)is periodio of period 4 , and whose Fourier series is given by \(\frac{a_{0}}{2}+\sum_{n=1}^{2}\left[a_{n} \cos \left(\frac{n \pi}{2} x\right)+b_{n} \sin \left(\frac{n \pi}{2} x\right)\right], \quad\) find \(a_{n}\)A. \(\frac{2}{n^{2} \pi^{2}}\)B. \(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\)C. \(\frac{4}{n^{2} \pi^{2}}\)D. \(\frac{2}{n \pi}\)\(\mathbf{E}_{1} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}}\)F. \(\frac{4}{n \pi}\)6. Let \(f(x)-2 x-l\) on \([0,2]\). The Fourier sine series for \(f(x)\) is \(\sum_{w}^{n} b_{n} \sin \left(\frac{n \pi}{2} x\right)\), What is \(b, ?\)A. \(\frac{4}{3 \pi}\)B. \(\frac{2}{\pi}\)C. \(\frac{4}{\pi}\)D. \(\frac{-4}{3 \pi}\)E. \(\frac{-2}{\pi}\)F. \(\frac{-4}{\pi}\)7. Let \(f(x)\) be periodic...

  • Solve using the Fourier Transform Method. 2.24) Solve Laplace's equation in a strip using Fourier transforms:...

    Solve using the Fourier Transform Method. 2.24) Solve Laplace's equation in a strip using Fourier transforms: u,)+ e-lal, u(x, L) = 0, u(x, y)0 as0o.

  • Wave problem

    Find the solution \(\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})\) for the wave problem on a string of length \(\boldsymbol{L}=\pi\) with \(c^{2}=1\) and conditions given by:\(\left\{\begin{array}{l}u(0, t)=0, u(\pi, t)=0, \quad t>0 \\ u(x, 0)=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=\sin x, 0<x<\pi\end{array}\right.\)

  • 1. Use the Fourier Transform to solve the following problem with W1 21 (a) Find the Fourier Trans...

    1. Use the Fourier Transform to solve the following problem with W1 21 (a) Find the Fourier Transform of u by applying F to the equation and initial condition; denote this function U(w, t). (b) Find u u(z, t) by taking the inverse transform of the U(w, t) you found in part (a). 1. Use the Fourier Transform to solve the following problem with W1 21 (a) Find the Fourier Transform of u by applying F to the equation and...

  • Solve the initial value problem

    ( 30 marks) Solve the initial value problem$$ \begin{aligned} \ddot{x} &=-4 x+3 y \\ \ddot{y} &=2 x-3 y \\ x(0)=0, & y(0)=0, & \dot{x}(0)=2, \quad \dot{y}(0)=1 \end{aligned} $$

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT