Question

Given Show that

Given

$$ \vec{F}(x, y)=\left\langle\frac{2 x^{3}+2 x y^{2}-2 y}{x^{2}+y^{2}}, \frac{2 y^{3}+2 x^{2} y+2 x}{x^{2}+y^{2}}\right\rangle $$

Show that \(\int_{C} \vec{F} \cdot d \vec{r}=4 \pi\) for any positively oriented simple closed curve that encloses the origin.

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Given Show that
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Find for the given F and C

    Find \(\int_{C} \vec{F} \cdot d r\) for the given \(\vec{F}\) and \(C\).\(\cdot \vec{F}=-y \vec{i}+x \vec{j}+7 \vec{k}\) and \(C\) is the helix \(x=\cos t, y=\sin t r \quad z=t\), for \(0 \leq t \leq 2 \pi .\)$$ \int_{C} \vec{F} \cdot d \vec{r}= $$Find \(\int_{C} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}\) for \(\overrightarrow{\mathrm{F}}=e^{y} \overrightarrow{\mathrm{i}}+\ln \left(x^{2}+1\right) \overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}}\) and \(C\), the circle of radius 4 centered at the origin in the \(y z\)-plane as shown below.$$ \int_{C} \vec{F} \cdot d \vec{r}= $$

  • Exact answer/fraction

    Evaluate \(\int_{C} \mathrm{~F} \cdot d \mathbf{r}\) using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results.$$ \int_{C}[4(2 x+7 y) \mathbf{i}+14(2 x+7 y) \mathbf{j}] \cdot d \mathbf{r} $$C: smooth curve from \((-7,2)\) to \((3,2)\)Evaluate \(\int_{C} \mathrm{~F} \cdot d \mathbf{r}\) using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results.$$ \int_{C} \cos (x) \sin (y) d x+\sin (x) \cos (y) d y $$C: line segment from \((0,-\pi)\) to \(\left(\frac{3 \pi}{2},...

  • Consider the region

    4. [5 pts.] Consider the region \(D\), outside the circles \(C_{2}\) and \(C_{3}\) and inside the circle \(C_{1}\) in the figure below and a vector field \(\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle\). Assume we know that \(\oint_{C_{2}} \vec{F} \cdot d \vec{r}=\oint_{C_{3}} \vec{F} \cdot d \vec{r}=-2 \pi\), and \(Q_{x}-P_{y}=2\) on an open region containing \(D .\) UseGreen's Theorem to find \(\oint_{C_{1}} \vec{F} \cdot d \vec{r}\).

  • Use Stokes' Theorem to make the following circulation calculations.

    Suppose \(\vec{F}=(5 x-3 y) \vec{i}+(x+4 y) \vec{j}\). Use Stokes' Theorem to make the following circulation calculations.(a) Find the circulation of \(\vec{F}\) around the circle \(C\) of radius 10 centered at the origin in the xy-plane, oriented clockwise as viewed from the positive z-axis. Circulation \(=\int_{C} \vec{F} \cdot d \vec{r}=\)(b) Find the circulation of \(\vec{F}\) around the circle \(C\) of radius 10 centered at the origin in the yz-plane, oriented clockwise as viewed from the positive \(x\)-axis. Circulation \(=\int_{C} \vec{F} \cdot...

  • Consider a solid of N atoms in contact with ta heat reservoir in the temperature region where the Debye T3 law is valid.

    4. Consider a solid of \(N\) atoms in contact with ta heat reservoir in the temperature region where the Debye \(T^{3}\) law is valid. Show that the energy fluctuation is given by$$ \frac{\left\langle E^{2}\right\rangle-\langle E\rangle^{2}}{\langle E\rangle^{2}} \approx \frac{0.07}{N}\left(\frac{\theta_{D}}{T}\right)^{3} $$

  • Evaluate line integral ( F. dr where C is any positively oriented simple closed curve that...

    Evaluate line integral ( F. dr where C is any positively oriented simple closed curve that encloses the origin by using a circle of radius r, and r is small enough so that the circle lies entirely inside C given F(x, y) = ? 1)_ 2xyi +(y2 – xº)j Ans (x² + y²)

  • Show that a helix of radius R and height h making N complete turns has the parametrization

    Let\(\mathbf{r}(t)=\left\langle R \cos \left(\frac{2 \pi N t}{h}\right), R \sin \left(\frac{2 \pi N t}{h}\right), t\right\rangle, \quad 0 \leq t \leq h\)(a) Show that \(\mathbf{r}(t)\) parametrizes a helix of radius \(R\) and height \(h\) making \(N\) complete turns.(b) Guess which of the two springs in Figure 5 uses more wire.(c) Compute the lengths of the two springs and compare.

  • value of z= 96 Task 3: Answer the following

    value of z= 96Task 3: Answer the following:a. Evaluate: \(\int_{\frac{\pi}{2}}^{\pi} \boldsymbol{Z} \cos ^{3}(x) \sin ^{2}(x) d x\)b. The moment of inertia, \(I\), of \(a\) rod of mass ' \(m^{\prime}\) and length \(4 r\) is given by \(I=\int_{0}^{4 r}\left(\frac{Z m x^{2}}{2 r}\right) d x\) where \(^{\prime} x^{\prime}\) is the distance from an axis of rotation. Find \(I \)Task 4: Answer the following:Using the Trapezoidal rule, find the approximate the area bounded by the curve\(y=\boldsymbol{Z} e^{\left(\frac{x}{2}\right)}\), the \(\mathrm{x}\) -axis and coordinates \(x=0,...

  • Consider the vector field: f (x, y)= «M(x, y), N(x, y)= v promet Let C be...

    Consider the vector field: f (x, y)= «M(x, y), N(x, y)= v promet Let C be any simple, positively oriented, closed curve that encloses the origin. Show that: F. do 21. We will solve this problem by completing the following steps: STEP 1 Let C be a positively oriented circle of radius r with the center at the origin. Letr be so small that the circle Člies within the region enclosed by the curve C(see figure below) Compute the integral...

  • 15. Let F(z,y)- F dr where C is any positively-oriented Jordan curve that encloses the origin Evaluate 15. Let F(z,y)- F dr where C is any positively-oriented Jordan curve that encloses the o...

    15. Let F(z,y)- F dr where C is any positively-oriented Jordan curve that encloses the origin Evaluate 15. Let F(z,y)- F dr where C is any positively-oriented Jordan curve that encloses the origin Evaluate

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT