Question

7. Consider a converging lens that has a focal length (f). Which one of these is...

7. Consider a converging lens that has a focal length (f). Which one of these is correct about the image when the object is placed in front of the lens at a distance of (f/4 )?

The image is real, erect, and diminished

The image is real, erect, and magnified

The image is virtual, inverted, and magnified

The image is virtual, erect, and magnified

The image is virtual, erect, and has the same size as the object

The image is real, inverted, and diminished

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The image is virtual, erect, and magnified.

as represented by following picture. 41 2F 2F, CL B, F, B C. Case (vi) Object dístance <f

Add a comment
Know the answer?
Add Answer to:
7. Consider a converging lens that has a focal length (f). Which one of these is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2.0 cm tall object is placed 10.0 cm in front of converging lens of focal...

    A 2.0 cm tall object is placed 10.0 cm in front of converging lens of focal length 8 cm. What can you say about the image formed by the lens? de the image is real, magnified and inverted the image is virtual, diminished and inverted O the image is virtual, magnified and upright the image is real, magnified and upright the image is real, diminished and inverted

  • please help in all sections! F Object When a real object is placed just inside the...

    please help in all sections! F Object When a real object is placed just inside the focal point F of a diverging lens, the image is A) virtual, erect, and diminished. B) real, inverted, and enlarged. C) real, inverted, and diminished. D) virtual, erect, and enlarged. E) virtual, inverted, and diminished. 3. A lens has a positive focal length f. The only way to get a magnification of -1 is to A) place a real object at the focal point....

  • Consider a converging lens whose focal length is 6.95 cm. An object is placed on the...

    Consider a converging lens whose focal length is 6.95 cm. An object is placed on the axis of the lens at a distance of 13.5 cm from the lens. How far is the object's image from the lens? image distance:   cm If it can be determined, is the image real or virtual? cannot be determined real virtual If it can be determined, is the image upright or inverted with respect to the object? cannot be determined inverted upright

  • 16. Suppose you have a converging lens of focal length = 20 cm. An object is...

    16. Suppose you have a converging lens of focal length = 20 cm. An object is placed 10 cm in front of the lens. A) The real image will be inverted and larger than the object B) The virtual image will be inverted and larger than the object C) The real image will be upright and smaller than the object D) None of the above are correct statements

  • 16. Suppose you have a converging lens of focal length = 20 cm. An object is...

    16. Suppose you have a converging lens of focal length = 20 cm. An object is placed 10 cm in front of the lens. A) The real image will be inverted and larger than the object B) The virtual image will be inverted and larger than the object C) The real image will be upright and smaller than the object D) None of the above are correct statements

  • 1 A converging lens with a focal length of 12.2 cm forms a virtual image 7.9mm...

    1 A converging lens with a focal length of 12.2 cm forms a virtual image 7.9mm tall, 11 2emto right of the lens. a. Determine the position of the object. b. Determine the size of the object. Is the image upright or inverted? Are the object and image on the same side or opposite sides of the lens? c. d. 2 You want to use a lens with a focal length of magnitude 36cm with the image twice as long...

  • 1.) An object is placed in front of a diverging lens with a focal length of...

    1.) An object is placed in front of a diverging lens with a focal length of 17.7 cm. For each object distance, find the image distance and the magnification. Describe each image. (a) 35.4 cm location _____cm magnification _____ nature real virtual upright inverted (b) 17.7 cm location _____  cm magnification _____ nature real virtual upright inverted (c) 8.85 cm location _____ cm magnification _____ nature real virtual upright inverted 2.) An object is placed in front of a converging lens...

  • A small object is placed 25.0 cm from a converging lens of focal length 40.0 cm....

    A small object is placed 25.0 cm from a converging lens of focal length 40.0 cm. The object is to the left of the lens. Where is the image? A- 17cm to the right of the lens B- 25cm to the left of the lens C- 17 cm to the left of the lens D-25 cm to the right of the lens E-67cm to the right of the lens F-67 cm to the left of the lens A small object...

  • A converging lens of focal length 20.0 cm is separated by 50.0 cm from a converging...

    A converging lens of focal length 20.0 cm is separated by 50.0 cm from a converging lens of focal length 5.00 cm. a) Find the position of the final image of an object placed 42.0 cm in front of the first lens. Solve graphically and mathematically. b) If the height of the object is 2.00 cm, what is the height of the final image? c) Is the final image real or virtual? Is it inverted or upright?

  • Converging- coovex F) Group B 1. An object is placed in front of a converging lens...

    Converging- coovex F) Group B 1. An object is placed in front of a converging lens with a focal length of magnitude 10.0 cm such that the image is four times the size of the object. (a) At what distances must the object be placed from the lens such that this would occur? (b) For each object distance determined in part (a), what is the image distance? (c) Specify whether the image is upright or inverted and real or virtual...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT