Question

10. (10 points) An Atwoods machine consists of blocks of mass m,-10.0 kg and m-20.0kg attached by a cord running over a pull
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2o 2. R2 o t 6.16 0-2 60

Add a comment
Know the answer?
Add Answer to:
10. (10 points) An Atwood's machine consists of blocks of mass m,-10.0 kg and m-20.0kg attached...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached...

    Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached by a cord running over a pulley as in the figure below. The pulley is id cylinder with mass M-7.30 kg and radiusr 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? Score: 1 out of Comment: (b) What is the acceleration...

  • An Atwood's machine consists of blocks of masses m,-11.0kg and m2-18.0kg attached by a cord running...

    An Atwood's machine consists of blocks of masses m,-11.0kg and m2-18.0kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M 8.50 kg and radius 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has not been graded yet (b) What is the acceleration...

  • illustrates an Atwood's machine. Let the masses of blocks A and B be 6.00 kg and...

    illustrates an Atwood's machine. Let the masses of blocks A and B be 6.00 kg and 2.50 kg , respectively, the moment of inertia of the wheel about its axis be 0.220 kgâ‹…m2 , and the radius of the wheel be 0.120 m . There is no slipping between the cord and the surface of the wheel. part a: Part A Part complete Find the magnitude of angular acceleration of the wheel C . α =…. rad/s^2 part b: Find...

  • The Atwood's machine has two hanging masses. The mass of the A is  3m and the mass...

    The Atwood's machine has two hanging masses. The mass of the A is  3m and the mass B is 2m . The pulley C can be considered as a solid cylinder with mass  m and radius R . There is no slipping between the cord and the surface of the wheel. Here,  m= 2.00 kg,  2m= 4.00 kg, and  3m= 6.00 kg. (Figure 1) Part A Part complete What is the speed of mass A after it falls 2.10 m down? v(f)=…..m/s

  • An Atwood's machine consists of two weights, m, = 3.2 kg and m2 = 2 kg,...

    An Atwood's machine consists of two weights, m, = 3.2 kg and m2 = 2 kg, connected by a by a string over a pulley of mass m, -1.7 kg and radius r = 0.2 m. Assume the pulley is a uniform solid cylinder (disk). The system is released from rest when my is 1.6 m above the floor, and my begins on the floor. Assume there is no friction in the pulley. Take the ground to be the location...

  • MR A pulley of mass 3M and radius R is mounted on ftictionless bearings and supported...

    MR A pulley of mass 3M and radius R is mounted on ftictionless bearings and supported by a stand of mass 4M at rest on a table as shown to the right. The rotational inertia of this pulley about its axis is (3/2)MR2. Passing over the pulley is a massless cord supporting a block of mass M on the left and a block of mass 2M on the right. The cord does not slip on the pulley, so after the...

  • A block of mass m, 1.90 kg and a block of mass m2 6.05 kg are...

    A block of mass m, 1.90 kg and a block of mass m2 6.05 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R 0.250 m and mass M - 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 8- 30.00 as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. M, R (a) Draw force diagrams of both blocks and of the pulley....

  • .016. A block of mass m, 2.45 kg and a block of mass m 6.05 kg...

    .016. A block of mass m, 2.45 kg and a block of mass m 6.05 kg are connected by a massless string over a puley in the shape of a solid disk having radius R 0.250 m and mass M20.0 kg. The fixed, wedge-shaped ramp makes an angle of 8 30.O as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks G My Notes Ask Your Teacher M. R (a) Draw force diagrams of both...

  • Question 3. Two blocks having mass m (2 kg) and m, (5 kg) are connected by...

    Question 3. Two blocks having mass m (2 kg) and m, (5 kg) are connected by a string passing over a pulley as shown in the figure. The pulley (in cylindrical disc shape) has a radius R (0.4 m) and mass (0.5 kg). The string does not slip on the pulley and the system is released from rest. Find the translational speeds of the blocks after mass 2 descends through a distance h (1.0 m) and find the angular speed...

  • An Atwood machine consists of two masses, mA= 63 kg and mB = 71 kg ,...

    An Atwood machine consists of two masses, mA= 63 kg and mB = 71 kg , connected by a massless inelastic cord that passes over a pulley free to rotate (Figure 1). The pulley is a solid cylinder of radius R = 0.40 mm and mass 5.0 kg. [Hint: The tensions FTA and FTB are not equal.] Acceleration of each mass is 0.57 m/s2 What % error would be made if the moment of inertia of the pulley is ignored?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT