Question

The Atwood's machine has two hanging masses. The mass of the A is  3m and the mass...

The Atwood's machine has two hanging masses. The mass of the A is  3m and the mass B is 2m . The pulley C can be considered as a solid cylinder with mass  m and radius R . There is no slipping between the cord and the surface of the wheel. Here,  m= 2.00 kg,  2m= 4.00 kg, and  3m= 6.00 kg.

(Figure 1)

Part A

Part complete

What is the speed of mass A after it falls 2.10 m down?

v(f)=…..m/s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution: > —$ mp3 < I figure o 1) АЯ figure ③ figure ③. * For . figure figure o o ТАЯ - TA - да ТА - mA ( 3-o) -> 6) of formg=(5.5) ma a = 9 9.81 >> 178 milya Sur of Using the equation V2_No2zzas * here No 20 mls so 2.10 m & Then Ne Vaas >> V281.98

Add a comment
Know the answer?
Add Answer to:
The Atwood's machine has two hanging masses. The mass of the A is  3m and the mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • illustrates an Atwood's machine. Let the masses of blocks A and B be 6.00 kg and...

    illustrates an Atwood's machine. Let the masses of blocks A and B be 6.00 kg and 2.50 kg , respectively, the moment of inertia of the wheel about its axis be 0.220 kgâ‹…m2 , and the radius of the wheel be 0.120 m . There is no slipping between the cord and the surface of the wheel. part a: Part A Part complete Find the magnitude of angular acceleration of the wheel C . α =…. rad/s^2 part b: Find...

  • (Figure 1) illustrates an Atwood's machine. Let the masses of blocks A and B be 9.00...

    (Figure 1) illustrates an Atwood's machine. Let the masses of blocks A and B be 9.00 kg and 2.00 kg, respectively, the moment of inertia of the wheel about its axis be 0.220 kg. m², and the radius of the wheel be 0.120 m. There is no slipping between the cord and the surface of the wheel. Part A Find the magnitude of the linear acceleration of block A. Part B Find the magnitude of linear acceleration of block B. Part C Find the magnitude of...

  • An Atwood's machine consists of blocks of masses m,-11.0kg and m2-18.0kg attached by a cord running...

    An Atwood's machine consists of blocks of masses m,-11.0kg and m2-18.0kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M 8.50 kg and radius 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has not been graded yet (b) What is the acceleration...

  • The figure below represents an Atwood's machine. There is no slipping between the cord and 6....

    The figure below represents an Atwood's machine. There is no slipping between the cord and 6. the surface of the wheel. The blocks have mass of 3.0 kg and 5.7 kg and the wheel has a radius of 0.12 m and mass of 10.3 kg. If the 5.7 kg mass falls 1.5 m, find the speed of each block (Assume the wheel is in the shape of a disk.) .0 5.2 125

  • Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached...

    Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached by a cord running over a pulley as in the figure below. The pulley is id cylinder with mass M-7.30 kg and radiusr 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? Score: 1 out of Comment: (b) What is the acceleration...

  • Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley.

    Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley. Part A If the pulley is a disk of radius R and mass M. find the acceleration of the masses.

  • A device known as Atwood's machine consists of two masses hanging from the ends of a...

    A device known as Atwood's machine consists of two masses hanging from the ends of a vertical rope that passes over a pulley. Assume the rope and pulley are massless and there is no friction in the pulley. When the masses are of 20.5 kg and 12.1 kg, calculate their acceleration, a, and the tension in the rope, T. Take g = 9.81 m/s2. Answer the acceleration in m/s2 and answer the tension in Newtons.

  • 10. (10 points) An Atwood's machine consists of blocks of mass m,-10.0 kg and m-20.0kg attached...

    10. (10 points) An Atwood's machine consists of blocks of mass m,-10.0 kg and m-20.0kg attached by a cord running over a pulley as in Fig. The pulley is a solid disk with I-0.16 kgm2 and radius r= 0.20 m. The block of mh is allowed to drop, and the cord turns the pulley without slipping. a) what is the acceleration of the system? b) find the tensions T, and T c) The velocity v after the mass m2 has...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp=6.33 kg and radius rp=0.250 m. The hanging masses are mL=21.1 kg and mR=14.1 kg.Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, TL and TR , respectively.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT