Question

Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley.


Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley. 


Part A 

If the pulley is a disk of radius R and mass M. find the acceleration of the masses.

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An Atwood's machine consists of two masses, mi and m2, which are connected by a massless...

    An Atwood's machine consists of two masses, mi and m2, which are connected by a massless inelastic cord that passes over a pulley. If the pulley has radius R and moment of inertia I about its axle, determine the acceleration of the masses mi and m2, and compare to the situation in which the moment of inertia of the pulley is ignored. [Hint: The tensions FTI and FT2 are not necessarily equal.] T2

  • Mass m1 is connected by a light string that passes over a pulley of mass m...

    Mass m1 is connected by a light string that passes over a pulley of mass m to a mass m2. ... Question: A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2. Both m... A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2. Both masses move virticaly and there is no slippage between the string and the...

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an accelerationSuppose that m1 and m2 are measured as m1=100±1 gram and m2=50±1 gram. Derive a formula of the uncertainty in the expected acceleration in terms of the masses and their uncertainties, and then calculate δα for...

  • An Atwood's machine consists of masses m1 and m2, and a pulley of negligible mass and...

    An Atwood's machine consists of masses m1 and m2, and a pulley of negligible mass and friction. Starting from rest, the speed of the two masses is 4.10 m/s at the end of 3.07 s. At that time, the kinetic energy of the system is 90.0 J and each mass has moved a distance of 6.30 m. Determine the lighter mass. Determine the heavier mass.

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 41.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 6.25 kg and is on an incline of 31.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 47.5° with coefficient of kinetic friction μ1 = 0.205. M2 has a mass of 8.05 kg and is on an incline of 33.5° with coefficient of kinetic friction μ2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=43.5° with coefficient of kinetic friction μ1=0.205 . M2 has a mass of 6.15 kg and is on an incline of θ2=35.5° with coefficient of kinetic friction μ2=0.105. The two-block system is in motion with the block of mass M2 sliding down the ramp.Find the magnitude...

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached...

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an acceleration a = g*(m1+m2)/)m1−m2 Suppose that m and are measured as m1 = 100 +- 1 gram and m2 = 50 +- 1 gram. Derive a formula of uncertainty in the expected acceleration in...

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=42.5 with coefficient of kinetic friction μ1=0.205. M2 has a mass of 7.25 kg and is on an incline of θ2=31.5 with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...

  • An Atwood's machine consists of two weights, m 3.4kg and m2 1.1 kg, connected by a by a string over a pulley of mas...

    An Atwood's machine consists of two weights, m 3.4kg and m2 1.1 kg, connected by a by a string over a pulley of mass mp-2.3 kg and radius r-0.28 m. Assume the pulley is a uniform solid cylinder (disk) 1m7 177 The system is released from rest when mj is 2.7 m above the floor, and m2 begins on the floor. Assume there is no friction in the pulley. Take the ground to be the location of zero GPE kg...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT