Question

Mass m1 is connected by a light string that passes over a pulley of mass m...

Mass m1 is connected by a light string that passes over a pulley of mass m to a mass m2. ... Question: A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2. Both m... A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2. Both masses move virticaly and there is no slippage between the string and the pulley. The pulley has a radius of 30.0 cm and a moment of inerita of MR^2. If m1 is 4.00 kg, m2 is 3.00 kg, and M is 6.00 kg, then what is the acceleration of the masses?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Mass m1 is connected by a light string that passes over a pulley of mass m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m1 is connected by a light string that passes over a pulley of mass...

    A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00 kg, then what is the acceleration of m1?

  • A mass m1 is connected by a light string that passes over a pulley of mass...

    A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00 kg, then what is the tension in the string...

  • A mass m1 = 6.00 kg is connected by a light string that passes over a...

    A mass m1 = 6.00 kg is connected by a light string that passes over a pulley of mass m3 = 7.5 kg to a mass m2 = 6.00 kg sliding on a frictionless inclined surface that makes an angle of 23° with the horizontal (see figure). The coefficient of kinetic friction between the mass m1 and the horizontal surface is 0.16. There is no slippage between the string and the pulley. What is the magnitude of the acceleration of...

  • A mass m1 = 5.00 kg is connected by a light string that passes over a...

    A mass m1 = 5.00 kg is connected by a light string that passes over a pulley of mass m3 = 5.0 kg to a mass m2 = 6.00 kg sliding on a frictionless inclined surface that makes an angle of 21° with the horizontal (see figure). The coefficient of kinetic friction between the mass m1 and the horizontal surface is 0.25. There is no slippage between the string and the pulley. What is the magnitude of the acceleration of...

  • A mass m1 = 5.50 kg is connected by a light string that passes over a...

    A mass m1 = 5.50 kg is connected by a light string that passes over a pulley of mass M = 11.5 kg to a mass m2 = 11.5 kg sliding on a horizontal surface (see figure). The coefficient of kinetic friction between the mass m2 and the surface is 0.17. There is no slippage between the string and the pulley. What is the magnitude of the tension that is acting on mass m1? (The moment of inertia of the...

  • A mass m1 = 18.5 kg is connected by a light string that passes over a...

    A mass m1 = 18.5 kg is connected by a light string that passes over a pulley of mass M = 13.5 kg to a mass m2 = 7.00 kg sliding on an inclined surface that makes an angle of 20° with the horizontal (see figure). The coefficient of kinetic friction between the mass m2 and the surface is 0.20. There is no slippage between the string and the pulley. What is the magnitude of the tension that is acting...

  • 6. A mass m1 = 3.00 kg is connected by a light string that passes over...

    6. A mass m1 = 3.00 kg is connected by a light string that passes over a pulley of mass m3 = 9.0 kg to a mass m2 = 9.50 kg sliding on a frictionless inclined surface that makes an angle of 33 with the horizontal (see figure). The coefficient of kinetic friction between the mass m, and the horizontal surface is 0.21. There is no slippage between the string and the pulley. What is the magnitude of the tension...

  • 7. A mass (mı) is connected by a light string that passes over a pulley of...

    7. A mass (mı) is connected by a light string that passes over a pulley of mass (m3) to a mass (m2) as shown in the figure. There is no slippage between the string and the pulley. The coefficient of kinetic friction between the mass (mi) and the horizontal surface is 0.25. The inclined surface is frictionless and makes an angle of 30.0° with the horizontal. The moment of inertia of the pulley is 1m3r2. What is the magnitude of...

  • 2. A mass m = 5.00 kg is connected by a light string that passes over...

    2. A mass m = 5.00 kg is connected by a light string that passes over a pulley of mass M 15.0 kg to a mass m2 = 10.5 kg sliding on a horizontal surface (see figure). The coefficient of kinetic friction between the mass my and the surface is 0.15. There is no slippage between the string and the pulley. What is the magnitude of the tension that is acting on mass m2? (The moment of inertia of the...

  • 2. A mass m, = 5.50 kg is connected by a light string that passes over...

    2. A mass m, = 5.50 kg is connected by a light string that passes over a pulley of mass M-10.5 kg to a mass my 10.0 kg sliding on a horizontal surface (see figure). The coefficient of kinetic friction between the mass me and the surface is 0.21. There is no slippage between the string and the pulley. What is the magnitude of the tension that is acting on mass my? (The moment of inertia of the pulley is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT