Question

9. A 30-turn circular coil of radius 4 cm and resistance 1 Ω is placed in a magnetic field directed perpendicu- lar to the pl
0 1
Add a comment Improve this question Transcribed image text
Answer #1

30 dt 此 t = 5 sec

Add a comment
Know the answer?
Add Answer to:
9. A 30-turn circular coil of radius 4 cm and resistance 1 Ω is placed in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 32-turn circular coil of radius 4.80 cm and resistance 1.00 Ω is placed in a...

    A 32-turn circular coil of radius 4.80 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 5.20 s.    If the flux is changing as a function of time, how...

  • A 23-turn circular coil of radius 3.00 cm and resistance 1.00 is placed in a magnetic...

    A 23-turn circular coil of radius 3.00 cm and resistance 1.00 is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 Ot + 0.040 ot, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 5.20 s. 2.77 If the flux is changing as a function of time, how do...

  • A 65-turn circular coil (radius = 31 cm) with a total resistance of 5.4 ? is...

    A 65-turn circular coil (radius = 31 cm) with a total resistance of 5.4 ? is placed in a uniform magnetic field directed perpendicular to the plane of the coil. The magnitude of this field varies with time according to B = A sin(?t), where the amplitude is A = 110 ?T and the angular frequency is ? = 50 ? rad/s. What is the magnitude of the current (in mA) induced in the coil at t = 39 ms?

  • 1) A 179‑turn circular coil of radius 3.55 cm and negligible resistance is immersed in a...

    1) A 179‑turn circular coil of radius 3.55 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 13.7 Ω resistor to create a closed circuit. During a time interval of 0.121 s, the magnetic field strength decreases uniformly from 0.643 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy: mJ 2) You decide...

  • 12. A 20-turn circular coil (radius = 4.0 cm, total resistance = 0.20 2) is placed...

    12. A 20-turn circular coil (radius = 4.0 cm, total resistance = 0.20 2) is placed in a uniform magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies with time as given by B(t) = 50e-0.5t mt. where t is measured in seconds. What is the magnitude of the induced current in the coil at 3.0 s? (8 points) + 5 6. B r=.04m 3 why? 2000- R=.2002 B(E)=50est m N=20 (I....

  • A circular coil of radius 0.11 m contains a single turn and is located in a...

    A circular coil of radius 0.11 m contains a single turn and is located in a constant magnetic field of magnitude 0.25 T. The magnetic field has the same direction as the normal to the plane of the coil. The radius increases to 0.31 m in a time of 0.080 s. a) Determine the magnitude of the emf induced in the coil. b) The coil has a resistance of 0.71 Ω. Find the magnitude of the induced current.

  • please show calculations. the answers are 11mA, 4.8uC, and 1.0V A 50-turn circular coil (radius =...

    please show calculations. the answers are 11mA, 4.8uC, and 1.0V A 50-turn circular coil (radius = 15 cm) with a total resistance of 4.0 ohm is placed in a uniform magnetic field directed perpendicularly to the plane of the coil. The magnitude of this field varies with time according to B = A sin (at), where A = 80 mu T and alpha = 50 pi rad/s. What is the magnitude of the current induced in the coil at t...

  • A coil 4.40 cm radius, containing 600 turns, is placed in a uniform magnetic field that...

    A coil 4.40 cm radius, containing 600 turns, is placed in a uniform magnetic field that varies with time according to B=( 1.20×10−2 T/s )t+( 3.10×10−5 T/s4 )t4. The coil is connected to a 590-Ω resistor, and its plane is perpendicular to the magnetic field. You can ignore the resistance of the coil. A) Find the magnitude of the induced emf in the coil as a function of time. B) What is the current in the resistor at time t0...

  • 1. A 85 turn elastic circular coil of wire initially has a radius of 74.2 cm...

    1. A 85 turn elastic circular coil of wire initially has a radius of 74.2 cm and is immersed in a uniform magnetic field with a strength of 0.495 T. At t 0, the coil is released and begins decreasing in radius at a constant rate of 7.22 cm/s. While it contracts, the number of turns does not change. a) Write the magnetic flux through a single turn of the coil as a function of time. (Hint: What causes the...

  • A circular coil of radius 0.100 m contains a single turn and is located in a...

    A circular coil of radius 0.100 m contains a single turn and is located in a constant magnetic field of magnitude 0.270 T. The magnetic field has the same direction as the normal to the plane of the coil. The radius increases to 0.310 m in a time of 0.0730 s. (a) Determine the magnitude of the emf induced in the coil. (b) The coil has a resistance of 0.790 . Find the magnitude of the induced current. (a) Number...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT