Question
a cord and mass are weappws arouns a fixed axel as shown initially, the mass is at a heigh”h” and the system is at the rest. the hanging mass is releases and falls to the ground. what will be the speed of tbe mass just before jt hits the ground?
b) A cord and mass are around a fixed axel as shown. 50 cm 0.75 kg 1.5 kg Speed p. 3
0 0
Add a comment Improve this question Transcribed image text
Answer #1

50cm 0.5m 2m 2 m2an盈 112.6 3、35

Add a comment
Know the answer?
Add Answer to:
a cord and mass are weappws arouns a fixed axel as shown initially, the mass is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A steel ball of mass 0.470 kg is fastened to a cord that is 92.0 cm long and fixed at the far end. The ball is then rele...

    A steel ball of mass 0.470 kg is fastened to a cord that is 92.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal, as shown in the figure. At the bottom of its path, the ball strikes a 2.90 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after...

  • A steel ball of mass 0.230 kg is fastened to a cord that is 74.0 cm...

    A steel ball of mass 0.230 kg is fastened to a cord that is 74.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal, as shown in the figure. At the bottom of its path, the ball strikes a 2.00 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after the collision.

  • A steel ball of mass 0.790 kg is fastened to a cord that is 99.0 cm...

    A steel ball of mass 0.790 kg is fastened to a cord that is 99.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal, as shown in the figure. At the bottom of its path, the ball strikes a 4.90 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after...

  • A steel ball of mass 0.440 kg is fastened to a cord that is 38.0 cm...

    A steel ball of mass 0.440 kg is fastened to a cord that is 38.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal, as shown in the figure. At the bottom of its path, the ball strikes a 4.40 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after...

  • A steel ball of mass 0.630 kg is fastened to a cord that is 39.0 cm...

    A steel ball of mass 0.630 kg is fastened to a cord that is 39.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal, as shown in the figure. At the bottom of its path, the ball strikes a 5.00 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after...

  • Question 5 A steel ball of mass 0.860 kg is fastened to a cord that is...

    Question 5 A steel ball of mass 0.860 kg is fastened to a cord that is 45.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal, as shown in the figure. At the bottom of its path, the ball strikes a 4.50 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both...

  • A block of mass m = 2.50 kg is hanging from a massless cord that is...

    A block of mass m = 2.50 kg is hanging from a massless cord that is wrapped around a pulley (mass = 4.50 kg) as shown in the figure. The cord does not slip relative to the pulley as the block falls. Find the magnitude of the acceleration of the hanging mass. (moment of inertia of the pulley = ½Mr²)

  • Problem 5. (20 points) A block of mass 2 kg on top of a table is...

    Problem 5. (20 points) A block of mass 2 kg on top of a table is held at rest against a spring with spring constant 1000 N/m. The spring is initially compressed distance 10 cm. The block is released, slides along the table, then leaves the table and falls 80 cm to the ground. (a) (6 points) Assuming the table is frictionless, calculate the speed of the block just as it leaves the edge of the table. (b) (6 points)...

  • A steel ball of mass 0.600 kg is fastened to a cord that is 60.0 cm...

    A steel ball of mass 0.600 kg is fastened to a cord that is 60.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal. At the bottom of its path, the ball strikes a 3.00 kg steel block initially at rest on a frictionless surface. The collision is elastic. (a) Find the speed of the ball just after collision. ( in m/s) (b) Find the speed of the block just after...

  • A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around...

    A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.6 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT