Question

A block of mass m = 2.50 kg is hanging from a massless cord that is...

A block of mass m = 2.50 kg is hanging from a massless cord that is wrapped around a pulley (mass = 4.50 kg) as shown in the figure. The cord does not slip relative to the pulley as the block falls. Find the magnitude of the acceleration of the hanging mass. (moment of inertia of the pulley = ½Mr²)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

effective mass is 2.5+(4.5/2) = 4.75 Kg

force acting is F = 2.5*9.8 = 24.5 N

using Newton's second law of motion

F = m*a

24.5 = 4.75*a

a = 24.5/4.75 = 5.15 m/s^2

Add a comment
Know the answer?
Add Answer to:
A block of mass m = 2.50 kg is hanging from a massless cord that is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please help! 10, A block of mass m = 3.50 kg is hanging from a massless...

    Please help! 10, A block of mass m = 3.50 kg is hanging from a massless cord that is wrapped around a pulley (mass = 5.00 kg) as shown in the figure. The cord does not slip relative to the pulley as the block falls. Find the magnitude of the tension in the cord. (moment of inertia of the pulley áMr2)

  • A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around...

    A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.6 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...

  • A block of mass m is hanging from a cord that is wrapped around a pulley...

    A block of mass m is hanging from a cord that is wrapped around a pulley with radius R and moment of inertia I. When the block is released from rest, the pulley will rotate counterclockwise. Part A Solve for the acceleration of the block (your answer can include m,g,R, and I) Part B Draw a free body diagram showing the forces that act on the block Part C What happens to the acceleration of the block if the moment...

  • A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia...

    A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia of pulley is 1 kg m2 and the radius of pulley is 0.2 m. What is the angular acceleration of the pulley and the free fall acceleration of the block? PLEASE SHOW ALL WORK. CORRECT ANSWER IS 5 rad/s/s & 1 m/s/s

  • 3. In the figure above, a spool or pulley with moment of inertia MR2 is hanging...

    3. In the figure above, a spool or pulley with moment of inertia MR2 is hanging from a ceiling by a (massless, unstretchable) string that is wrapped around it at a radius R, while a block of equal mass M is hung on a second string that is wrapped around it at a radius r as shown. Find the magnitude of the acceleration of the the central pulley.

  • An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass

    An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass m2 = 3.00 kg on a frictionless surface (see figure). The pulley rotates about a frictionless axle and has a moment of inertia of 0.570 kg · m² and a radius of 0.310 m. Assume that the cord does not slip on the pulley. (a) Find the acceleration of the two masses. m/s2 (b) Find the tensions T1 and T2

  • A 2.20 kg mass is attached to a light cord that is wrapped around a pulley...

    A 2.20 kg mass is attached to a light cord that is wrapped around a pulley of radius 4.35 cm, which turns with negligible friction. The mass falls at a constant acceleration of 2.05 m/s2. Find the moment of inertia of the pulley.

  • A 1.60 kg mass is attached to a light cord that is wrapped around a pulley...

    A 1.60 kg mass is attached to a light cord that is wrapped around a pulley of radius 4.75 cm, which turns with negligble friction. The mass falls at a constant acceleration of 3.40 m/s^2. Find the moment of inertia of the pulley.

  • 4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates...

    4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates about a vertical axis on frictionless bearings. A massless cord passes around the equator of the sphere, over a pulley of rotational inertia 1-1.60 kg. m2, and radius r = 0.40 m, and is attached to a block of mass m 8.00 kg which is released from rest. The cord does not slip on the sphere or pulley, and the pulley bearings are frictionless....

  • A box of mass m = 10.0 kg is attached to a rope. The other end...

    A box of mass m = 10.0 kg is attached to a rope. The other end of the rope is wrapped around a pulley with a radius of 15.0 cm. When you release the box, it begins to fall and the rope around the pulley begins to unwind, causing the pulley to rotate. As the box falls, the rope does not slip as it unwinds from the pulley. If the box is traveling at a speed of 2.50 m/s after...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT