Question

A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia...

A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia of pulley is 1 kg m2 and the radius of pulley is 0.2 m. What is the angular acceleration of the pulley and the free fall acceleration of the block? PLEASE SHOW ALL WORK. CORRECT ANSWER IS 5 rad/s/s & 1 m/s/s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

your given answer seems incorrect to me.

Add a comment
Know the answer?
Add Answer to:
A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m is hanging from a cord that is wrapped around a pulley...

    A block of mass m is hanging from a cord that is wrapped around a pulley with radius R and moment of inertia I. When the block is released from rest, the pulley will rotate counterclockwise. Part A Solve for the acceleration of the block (your answer can include m,g,R, and I) Part B Draw a free body diagram showing the forces that act on the block Part C What happens to the acceleration of the block if the moment...

  • A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around...

    A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.6 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...

  • A block of mass m = 2.50 kg is hanging from a massless cord that is...

    A block of mass m = 2.50 kg is hanging from a massless cord that is wrapped around a pulley (mass = 4.50 kg) as shown in the figure. The cord does not slip relative to the pulley as the block falls. Find the magnitude of the acceleration of the hanging mass. (moment of inertia of the pulley = ½Mr²)

  • A small block of mass m2​ hangs from a massless rope wrapped around the inner cylinder...

    A small block of mass m2​ hangs from a massless rope wrapped around the inner cylinder of a pulley with inner radius of R2​. The moment of inertia of the entire pulley is I = 4m2(R2​)2. Another block m1​= m2​ is connected to the outer cylinder of the pulley via a horizontal massless rope wrapped around the outer cylinder of the pulley with radius R1=2R2​. The coefficient of kinetic friction between the block and the horizontal surface is μk​ =​...

  • A 1.60 kg mass is attached to a light cord that is wrapped around a pulley...

    A 1.60 kg mass is attached to a light cord that is wrapped around a pulley of radius 4.75 cm, which turns with negligble friction. The mass falls at a constant acceleration of 3.40 m/s^2. Find the moment of inertia of the pulley.

  • A string is wrapped around a pulley of radius 0.5 m and moment of inertia 0.1...

    A string is wrapped around a pulley of radius 0.5 m and moment of inertia 0.1 kg. m². When the string is pulled with a force F, the pully rotates, resulting in angular acceleration of 2 rad/s2 Determine the magnitude of the force F. (Hint: Use Torque and angular acceleration). OON O 0.4N 16N OBN

  • A string is wrapped around a pulley of radius 0.5 m and moment of inertia 0.1...

    A string is wrapped around a pulley of radius 0.5 m and moment of inertia 0.1 kg. m². When the string is pulled with a force F, the pully rotates, resulting in angular acceleration of 2 rad/s2 Determine the magnitude of the force F. (Hint: Use Torque and angular acceleration). OON O 0.4N 16N OBN

  • A 2.20 kg mass is attached to a light cord that is wrapped around a pulley...

    A 2.20 kg mass is attached to a light cord that is wrapped around a pulley of radius 4.35 cm, which turns with negligible friction. The mass falls at a constant acceleration of 2.05 m/s2. Find the moment of inertia of the pulley.

  • The pulley shown (Figure 1) has a moment of inertia IA = 0.625 kg⋅m2 , a...

    The pulley shown (Figure 1) has a moment of inertia IA = 0.625 kg⋅m2 , a radius r = 0.250 m , and a mass of 20.0 kg. A cylinder is attached to a cord that is wrapped around the pulley. Neglecting bearing friction and the cord’s mass, express the pulley’s final angular velocity in terms of the magnitude of the cord’s tension, T (measured in N), 4.00 s after the system is released from rest. Use the principle of...

  • 3. In the figure above, a spool or pulley with moment of inertia MR2 is hanging...

    3. In the figure above, a spool or pulley with moment of inertia MR2 is hanging from a ceiling by a (massless, unstretchable) string that is wrapped around it at a radius R, while a block of equal mass M is hung on a second string that is wrapped around it at a radius r as shown. Find the magnitude of the acceleration of the the central pulley.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT