Question

A small block of mass m2​ hangs from a massless rope wrapped around the inner cylinder...

A small block of mass m2​ hangs from a massless rope wrapped around the inner cylinder of a pulley with inner radius of R2​. The moment of inertia of the entire pulley is I = 4m2(R2​)2. Another block m1​= m2​ is connected to the outer cylinder of the pulley via a horizontal massless rope wrapped around the outer cylinder of the pulley with radius R1=2R2​. The coefficient of kinetic friction between the block and the horizontal surface is μk​ =​ 1/8 (i.e. the frictional force is f = 1/8m1​g). When m2 is released from rest, what is the angular acceleration (α) of the block and pulley system?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A small block of mass m2​ hangs from a massless rope wrapped around the inner cylinder...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m2 hangs from a rope. The rope wraps around a pulley of...

    A block of mass m2 hangs from a rope. The rope wraps around a pulley of rotational inertia I, radius R, and then attaches to a second mass m1, which sits on a frictionless table as shown in figure. Derive an equation of the acceleration of the blocks when they are released?

  • A thick walled cylinder has a light string wrapped around its outer radius and rotates about...

    A thick walled cylinder has a light string wrapped around its outer radius and rotates about a horizontal axis. The string then goes vertically straight up and over a massive pulley that also rotates about a horizontal axis, and finally connects to a mass m = 0.900 kg on a rough incline (μk = 0.200) that is angled at 25.0° to the horizontal. When the system is released from rest the mass slides down the ramp a distance of 1.80...

  • A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around...

    A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.6 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...

  • A hanging weight, with a mass of m1 = 0.365 kg, is attached by a rope...

    A hanging weight, with a mass of m1 = 0.365 kg, is attached by a rope to a block with mass m2 = 0.825 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...

  • A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia...

    A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia of pulley is 1 kg m2 and the radius of pulley is 0.2 m. What is the angular acceleration of the pulley and the free fall acceleration of the block? PLEASE SHOW ALL WORK. CORRECT ANSWER IS 5 rad/s/s & 1 m/s/s

  • Two blocks are connected by massless string that is wrapped around a pulley. Block 1 has...

    Two blocks are connected by massless string that is wrapped around a pulley. Block 1 has a mass m1=5.30m1=5.30 kg, block 2 has a mass m2=2.50m2=2.50 kg, while the pulley has a mass of 1.60 kg and a radius of 14.1 cm. The pulley is frictionless, and the surface mass 1 is on is also frictionless. If the blocks are released from rest, how far will block 2 fall in 2.60 s?

  • A light string is wrapped around a solid cylinder, and a block of mass m=100g hangs...

    A light string is wrapped around a solid cylinder, and a block of mass m=100g hangs from the free end of the string, as shown Figure A2.17. When released, the block falls a distance of 1.00m in 2.00s. Draw free-body (or force) diagrams for the block and the cylinder. Calculate the tension in the string. Determine the mass (M) of the cylinder. A light string is wrapped around a solid cylinder, and a block of mass m 100 g hangs...

  • Explain how please. A 15 kg block is attached to a rope that is wrapped many...

    Explain how please. A 15 kg block is attached to a rope that is wrapped many times around the rim of a flywheel (pulley) of radius 0.2 meters. When the block is released the rope unspools without slipping. If the acceleration of the block is 3.5, what is the rotational inertia of the flywheel (in kg·m2)?

  • A thin, massless rope is wrapped around a cylinder (I=MR^2/2) with radius .4m. The rope is...

    A thin, massless rope is wrapped around a cylinder (I=MR^2/2) with radius .4m. The rope is attached to a hanging bag of stuff (m=.1kg). If the stuff accelerates downward at 1.0m/s^2 what is the mass of the wheel? Why is tension not the weight of the stuff?

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction ulk = 0.15. The incline is at the angle o...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT