Question

10, A block of mass m = 3.50 kg is hanging from a massless cord that is wrapped around a pulley (mass = 5.00 kg) as shown in the figure. The cord does not slip relative to the pulley as the block falls. Find the magnitude of the tension in the cord. (moment of inertia of the pulley áMr2)Please help!

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Please help! 10, A block of mass m = 3.50 kg is hanging from a massless...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m = 2.50 kg is hanging from a massless cord that is...

    A block of mass m = 2.50 kg is hanging from a massless cord that is wrapped around a pulley (mass = 4.50 kg) as shown in the figure. The cord does not slip relative to the pulley as the block falls. Find the magnitude of the acceleration of the hanging mass. (moment of inertia of the pulley = ½Mr²)

  • A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around...

    A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.6 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...

  • A block of mass m is hanging from a cord that is wrapped around a pulley...

    A block of mass m is hanging from a cord that is wrapped around a pulley with radius R and moment of inertia I. When the block is released from rest, the pulley will rotate counterclockwise. Part A Solve for the acceleration of the block (your answer can include m,g,R, and I) Part B Draw a free body diagram showing the forces that act on the block Part C What happens to the acceleration of the block if the moment...

  • 3. In the figure above, a spool or pulley with moment of inertia MR2 is hanging...

    3. In the figure above, a spool or pulley with moment of inertia MR2 is hanging from a ceiling by a (massless, unstretchable) string that is wrapped around it at a radius R, while a block of equal mass M is hung on a second string that is wrapped around it at a radius r as shown. Find the magnitude of the acceleration of the the central pulley.

  • A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia...

    A 1-kg block hanging from a cord wrapped around a cylinder pulley. The moment of inertia of pulley is 1 kg m2 and the radius of pulley is 0.2 m. What is the angular acceleration of the pulley and the free fall acceleration of the block? PLEASE SHOW ALL WORK. CORRECT ANSWER IS 5 rad/s/s & 1 m/s/s

  • Please help, I dont understand this... A block of mass m1 = 34 kg on a...

    Please help, I dont understand this... A block of mass m1 = 34 kg on a horizontal surface is connected to a mass m2 = 16.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.23. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? (b)...

  • In the figure below, the hanging object has a mass of m1 -0.480 kg; the sliding block has a mass ...

    In the figure below, the hanging object has a mass of m1 -0.480 kg; the sliding block has a mass of m2 0.820 kg; and the pulley is a hollow cylinder with a mass of M0.350 kg, an inner radius of R10.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface is Hk0.250. The pulley turns without...

  • Mass m1 = 5.80 kg is connected to mass m2 = 3.50 kg by a light...

    Mass m1 = 5.80 kg is connected to mass m2 = 3.50 kg by a light string that passes over a frictionless pulley. The pulley has a moment of inertia of 0.490 kg · m2 and a radius of 0.280 m. Mass m2 sits on a frictionless horizontal surface. The string does not slip while in motion on the pulley. Find the tension force T1 on mass m1 in N

  • In the figure below, the hanging object has a mass of m, = 0.480 kg; the...

    In the figure below, the hanging object has a mass of m, = 0.480 kg; the sliding block has a mass of m, = 0.825 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R4 = 0.020 0 m, and an outer radius of R, = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT