Question

The circuit in the figure below shows four capacitors connected to a battery. The switch s is initially open, and all capacit

0 0
Add a comment Improve this question Transcribed image text
Answer #1

93=c3 V3 8.2HF(3.aa)-[a6-Ч]με = 9 ωhon suitch is closed, се, ะ CatCy =1443.qs lt ,THF 41 sqvi-54pF( 5. Sq) =Isa.qe) HC 41

Add a comment
Know the answer?
Add Answer to:
The circuit in the figure below shows four capacitors connected to a battery. The switch s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The circuit in the figure below shows four capacitors connected to a battery. The switch S...

    The circuit in the figure below shows four capacitors connected to a battery. The switch S is initially open, and all capacitors have reached their final charge. The capacitances are ci-6.10 F, C2. 11.00,F, C3.8.20,f, and ca. 3.90pE 00V (a) Find the potential difference across each capacitor and the charge stored in each HC (b) The switch is now closed. What is the new final potential difference across each capacitor and the new charge stored in each? HC IC Q4-...

  • Q22 (Capacitors) The figure below shows a 15.0 V battery and four uncharged capacitors of capacitances...

    Q22 (Capacitors) The figure below shows a 15.0 V battery and four uncharged capacitors of capacitances C1 = 8.00 μF, C2 = 4.00 μF, C3 = 6.00 μF, and C4 = 3.00 μF. If only switch S1 is closed, what is the charge on each capacitor? (a)    C1 __________ μC (b)    C2 __________ μC (c)    C3 __________μC (d)    C4 __________ μC If both switches are closed, what is the charge on each capacitor? (e)    C1 __________μC (f )    C2 __________μC (g)    C3 __________ μC (h)    C4 __________ μC...

  • Two capacitors, C1-24.0 μF and C2-41.0 μF, are connected in series, and a 21.0-V battery is...

    Two capacitors, C1-24.0 μF and C2-41.0 μF, are connected in series, and a 21.0-V battery is connected across them (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance 15.13846154F total energy storedYour response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J (b) Find the energy stored in each individual capacitor energy stored in Your response differs significantly from the correct answer. Rework your solution...

  • Four capacitors are arranged in the circuit shown in the figure. The capacitors have the values...

    Four capacitors are arranged in the circuit shown in the figure. The capacitors have the values C1 = 27.5 μF, C2 = 45.5 μF, C3 = 50.5 μF, C4 = 40.5 μF, and the power supply is at voltage V = 16.5 V. What is the equivalent capacitance of the circuit? Four capacitors are arranged in the circuit shown in the figure. The capacitors have the values C1-27.5 μF, C2 = 45.5 μF, C3 = 50.5 F, C.-40.5 and the...

  • consider the circuit shown below. The capacitors have the following capacitances: C1=6 3. Consider the circuit...

    consider the circuit shown below. The capacitors have the following capacitances: C1=6 3. Consider the circuit shown below. The capacitors have the following capacitances: C1-6 μF, C2 = 3μF and Δ V-20V. Ci is charged by closing the switch Si. Switch Sı is then opened and the charged capacitor is connected to the uncharged capacitor by closing S2. (ぺ s, (a) Calculate the initial charge on Cr (b) After opening Si and closing S2, how does the potential difference across...

  • Fig. 1 shows a circuit of four capacitors connected to a battery with a potential difference...

    Fig. 1 shows a circuit of four capacitors connected to a battery with a potential difference ?_0. Capacitor 4 is filled with a dielectric with 0 dielectric constant ? = 4. The capacitance value of the capacitors is equal ?1 =?2 = ?3 = ?. The capacitance of capacitor 4 is also equal to ? / 2 when in the middle of their plates there is no dielectric. a) Calculate the free charge stored in the capacitor 4. Its answer...

  • The circuit in the figure below contains a 9.00 v battery and four capacitors. The two...

    The circuit in the figure below contains a 9.00 v battery and four capacitors. The two capacitors on the left and right both have same capacitance of C, -14.20. The capacitors in the top two branches have capacitances of 6.00 pF and C - 28.20 F 6.00 с. 9.00 V (a) What is the equivalent capacitance (in pf) of all the capacitors in the entire circuit? (b) What is the charge (in) stored by each capacitor? right 34.20 pf capacitor...

  • Two capacitors, C1 26.0 μF and C2 = 30.0 μF, are connected in series, and a...

    Two capacitors, C1 26.0 μF and C2 = 30.0 μF, are connected in series, and a 6.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor equivalent capacitance 13.93 total energy stored 25e-5 (b) Find the energy stored in each individual capacitor. energy stored in C1 energy stored in C2 1.340-4X 83.58 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each ste care...

  • Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference.

    Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference. Part A What is the charge on the 4.9 μF capacitor? Part B What is the total energy stored in all three capacitors?Part C The capacitors are disconnected from the potential difference without allowing them to discharge. They are the reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor...

  • Three capacitors having capacitances of 8.5 μF, 8.1 μF, and 4.5 μF are connected in series...

    Three capacitors having capacitances of 8.5 μF, 8.1 μF, and 4.5 μF are connected in series across a 31 V potential difference. A. what is the charge on the 4.5 μF capacitor? B. What is the total energy stored in all three capacitors?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT