Question

2. (50 pts.) Consider the reaction A → R+S with rate -ra = k (oth order) in an isothermal batch reactor. The initial reaction

0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution: A RTS -JA=k -I CA = k a dcn = k/ at CAOCA=kt Given: +2=0.75 min i-e CACAO CAO- CAO = k ty como = K (0.75) ► for to

Add a comment
Know the answer?
Add Answer to:
2. (50 pts.) Consider the reaction A → R+S with rate -ra = k (oth order)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The second order gas phase irreversible reaction: 2.4-B is carried out in an isothermal batch reactor...

    The second order gas phase irreversible reaction: 2.4-B is carried out in an isothermal batch reactor containing 40 kg of catalyst and with an initial volume of 60-liter. The reactor is initially filled with equal molar quantities of A and inert I at 300 K and 2.5 atm. Calculate the time needed for the concentration of product (B) to be 0.02 mole/liter if: a) the reaction takes in a constant pressure batch reactor (3 points) b) the reaction takes place...

  • Question # 3 (10 points) The isothermal, isobaric elementary gas phase reaction A+B -+ 2C is...

    Question # 3 (10 points) The isothermal, isobaric elementary gas phase reaction A+B -+ 2C is performed in a Plug Flow Reactor. The feed contains A-20% and B=80%. The total feed flows at 100 mol/min and 5 m/min. The rate constant, k-0.16m/(mol. min). Calculate the volume of the reactor at 70% conversion of component A for the following cases: a- Case 1: Assume B is an excess reactant b- Case 2: B is NOT an excess reactant C- Compare the...

  • Data possibly uselul to all prouteS Im-1000 dm, R-0.082 (Latm)(mole K)-8.314 J/(mol K)- 1.987 cal/(mol )...

    Data possibly uselul to all prouteS Im-1000 dm, R-0.082 (Latm)(mole K)-8.314 J/(mol K)- 1.987 cal/(mol ) Problem 1 (6 out of 30 points) The second order gas phase irreversible reaction: 2.4-B is carried out in an isothermal batch reactor containing 40 kg of catalyst and with an initial volume of 60-liter. The reactor is initially filled with equal molar quantities of A and inert I at 300 K and 2.5 atm. Calculate the time needed for the concentration of product...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k k and not on the reactant concentration. It is expressed as t1/2=0.693k t 1 / 2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0. A certain first-order reaction (A→products A → p r o d u c t s ) has a rate constant of 9.30×10−3...

  • Question 8 (20 marks): N2Os decomposes into NO2 and NO3 with a rate constant of: k(T)=1.96x1014 exp[-10660/T] s At t 0,...

    Question 8 (20 marks): N2Os decomposes into NO2 and NO3 with a rate constant of: k(T)=1.96x1014 exp[-10660/T] s At t 0, pure N204 is admitted into a constant temperature and volume reactor with an initial pressure of 2 atm. After 1 min, what is the total pressure of the reactor? Assume anr isothermal reaction at 273 K Question 8 (20 marks): N2Os decomposes into NO2 and NO3 with a rate constant of: k(T)=1.96x1014 exp[-10660/T] s At t 0, pure N204...

  • Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and k...

    Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and k is the rate constant in inverse seconds (s−1). a) What is the half-life of a first-order reaction with a rate constant of 4.80×10−4  s−1? b) What is the rate constant of a first-order reaction that takes 188 seconds for the reactant concentration to drop to half of its initial value? Express your answer with the appropriate units. c)A certain first-order reaction has a rate constant...

  • 2. Answer the following questions by connecting the half-life of each first-order reaction to the rate...

    2. Answer the following questions by connecting the half-life of each first-order reaction to the rate constant. a. The rate constant of a first-order reaction is 2.43 × 10–2 min–1. What is the half-life of the reaction? (2 points) b. A first-order reaction has a rate constant of 0.547 min-1. How long will it take a reactant concentration 0.14 M to decrease to 0.07 M? (2 points) c. The half-life of a first-order reaction is 5.47 min. What is the...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t 1/2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t 1/2 = 1 k[A ] 0 Part A A certain first-order reaction ( A→products ) has a rate constant of 9.90×10−3 s −1 at 45 ∘...

  • please solve it right . Example: Van de Vusse Reaction in an CSTR Van de Vusse liquid phase reaction is carried out...

    please solve it right . Example: Van de Vusse Reaction in an CSTR Van de Vusse liquid phase reaction is carried out in an isothermal CSTR according to the following stoichiometric equations: k3 where B is the desired product, and C and D are the undesired byproducts. The feed to the CSTR contains the reactant A only. The reaction rates are given by the following rate laws: 2 Additional information: k 0.8333 min k2 1.667 min, k3 0.1667 L min...

  • 1. The second-order rate constant for self-reaction of hydroxyl radicals 2 OH → H2O + O...

    1. The second-order rate constant for self-reaction of hydroxyl radicals 2 OH → H2O + O has the value 1.0786E9 M-1·s-1 at 360.0 K. Compute the half-life of OH radicals at this temperature if the initial concentration is 6.74E-6 M.    3. Calculate the initial rate of a first-order reaction if the concentration of reactant is 0.37 M and the half-life is 4.48 s. Enter the correct numerical value to 2.0% precision. Express scientific notation like 4.29E-15 M·s-1 4. Cyano...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT