Question

A standing wave has maximum amplitude 7 and nodes at 0, /2, a, 31/2, 2T, as shown in the figure. Each point that is not a nod
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution ; Given that, The The Standing wave Amplitude is = 7 given nodes are =0,5/2, 4, 37/2 , 27 goes up and down with In aFrom the data , we have the Amplitude of the wave is =) A = 7, Here ,ß= 40 because the cos ßt term is constant when the valuthe value for one complete cycle. Here to solve - & Period = a0 a T = 20 here, =) a=2 substitute 2=9, and ß=47 and A= 7 the s

Add a comment
Know the answer?
Add Answer to:
A standing wave has maximum amplitude 7 and nodes at 0, /2, a, 31/2, 2T, as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Solve the given initial-value problem. dax + 4x = -7 sin(2t) + 6 cos(2t), x(0) =...

    Solve the given initial-value problem. dax + 4x = -7 sin(2t) + 6 cos(2t), x(0) = -1, x'(0) = 1 xce) = -cos(2+) – sin(2t) + {cos(21) + (sin(21) Need Help? Read It Watch It Talk to a Tutor

  • Consider the 4th harmonic (standing wave with n = 4) on a string of length L...

    Consider the 4th harmonic (standing wave with n = 4) on a string of length L with fixed ends, mass density μ and tension T .a) On a standing wave, the nodes are the points that are not moving, and the antinodes the ones that move with the biggest amplitude. How many nodes and antinodes are on the 4th harmonic? Count them and make a graph of the function clearly showing where all the nodes and antinodes are located. b)...

  • D Question 7 1 pts How many nodes and antinodes are shown in the standing wave...

    D Question 7 1 pts How many nodes and antinodes are shown in the standing wave below? one-third node and one antinode two nodes and three antinodes one node and two antinodes three nodes and two antinodes Question 8 1 pts A mass-spring system oscillates with an amplitude of 9.8 cm. If the force constant of the spring of 397 N/m and the mass is 0.67 kg, what is the magnitude of the maximum acceleration of the mass in m/s2?...

  • Question: A standing wave is established in a string and can be described by the equation:...

    Question: A standing wave is established in a string and can be described by the equation: y(2, t) = 4.18 sin(14.4x) cos(980t) cm. Where z is in m and t is in s. Part 1) What is the position of the first anti-node? m Part 2) What is the maximum speed of a piece of string at x = 0.309 m? Umax = m/s Part 3) This standing wave is formed from an input wave travelling to the right interfering...

  • Adjacent antinodes of a standing wave on a string are 15.0 cm apart. A particle at...

    Adjacent antinodes of a standing wave on a string are 15.0 cm apart. A particle at an antinode oscillates in simple harmonic motion with amplitude 0.850 cm and period 0.0750 s. The string lies along the +x-axis and is fixed at x = 0. (a) How far apart are the adjacent nodes? (b) What are the wavelength, amplitude, and speed of the two traveling waves that form this pattern? (c) Find the maximum and minimum transverse speeds of a point...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.016 sin(4πx) cos (57πt), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m ymax =  m vmax =  m/s (b) x = 0.25 m ymax =  m vmax =  m/s (c) x = 0.30 m ymax =  m vmax =  m/s (d) x = 0.50...

  • Problem A long string is fixed at one end and a standing wave is generated with...

    Problem A long string is fixed at one end and a standing wave is generated with a mechanical oscillator attached at one end. The opposite end of the string can be considered as a node, and treat it as the x = 0 point. The distance between adjacent nodes on the string is 20.0 cm, and an antinode oscillates with a period of 0.659 s and an amplitude of 0.550 cm. (a) Find the displacement of a point on the...

  • Adjacent antinodes of a standing wave of a string are 20.0 cm apart. A particle at...

    Adjacent antinodes of a standing wave of a string are 20.0 cm apart. A particle at an antinode oscillates in simple harmonic motion with amplitude 0.600 cm and period 0.100 s. The string lies along the +x-axis and its left end is fixed at x = 0. The string is 70.0 cm long. At time t = 0, the first antinode is at maximum positive displacement. a. Is the right end of the string fixed or free? Explain. b. Sketch...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.023 sin(4x) cos (591), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m Ymax = Vmax = m/s m (b) x = 0.25 m Vmax = Vmax = m m/s (c) x = 0.30 m Ymax = m Vmax...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.021 sin(4x) cos (56át), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m Ymax = m Vmax = m/s (b) x = 0.25 m Ymax = Vmax = m m/s (c) x = 0.30 m Ymax = Vmax =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT