Question

q R ww С I SwitchQuestion 4: Suppose R 270 k2, C = 820 jF in Figure 4in section 6.2, calculate the voltage across the capacitor, 37 seconds af

0 0
Add a comment Improve this question Transcribed image text
Answer #1

9.8) T2 CR 2270X16X 820X10 T = 2214 sec.) Q. 7) vahet & U = 9x - 37/2214 luz 4.6/5 Voll

Add a comment
Know the answer?
Add Answer to:
q R ww С I Switch Question 4: Suppose R 270 k2, C = 820 jF...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. Suppose that you are supplied with this equipment: 1 non-ideal battery (with internal resistance r 0.012 Q), plu...

    4. Suppose that you are supplied with this equipment: 1 non-ideal battery (with internal resistance r 0.012 Q), plus 2 switches and plenty of wire (of negligible resistance) parallel-plate capacitor, initially uncharged. 4 identical ohmic resistors, each with resistance R 4.00 2 solenoid inductors, with inductance values L, and L, respectively. Inductor A is half as long as inductor B Inductor A has a diameter of 5.30 cm; inductor B has a diameter of 6.36 cm And you conduct the...

  • Please do question 524 the power in watts dissipated by the resistor. Hamad Alrobayan ans:4 ource, resistor, 524) Given a series circuit consisting of a DC voltage capacitor, inductor, and switch...

    Please do question 524 the power in watts dissipated by the resistor. Hamad Alrobayan ans:4 ource, resistor, 524) Given a series circuit consisting of a DC voltage capacitor, inductor, and switch which closes at t-o. All elements are initially uncharged. If v-1 volts, R-4 Ohms, C-1/10 Farads, and L-2 Henries. DO NOT determine current. Determine voltage across the INDUCTOR (VL(t)). Any inverse LT requires Stanley met Express any angle in radians. ans:4 Hamad Alrobayan 765 Given th vstem in Fig...

  • 4. Suppose that you are supplied with this equipment: 1 non-ideal battery (with internal resistance r...

    4. Suppose that you are supplied with this equipment: 1 non-ideal battery (with internal resistance r 0.012 Q), plus 2 switches and plenty of wire (of negligible resistance) parallel-plate capacitor, initially uncharged. 4 identical ohmic resistors, each with resistance R 4.00 2 solenoid inductors, with inductance values L, and L, respectively. Inductor A is half as long as inductor B Inductor A has a diameter of 5.30 cm; inductor B has a diameter of 6.36 cm And you conduct the...

  • 4. Suppose that you are supplied with this equipment: 1 non-ideal battery (with internal resistance r...

    4. Suppose that you are supplied with this equipment: 1 non-ideal battery (with internal resistance r 0.012 Q), plus 2 switches and plenty of wire (of negligible resistance) parallel-plate capacitor, initially uncharged. 4 identical ohmic resistors, each with resistance R 4.00 2 solenoid inductors, with inductance values L, and L, respectively. Inductor A is half as long as inductor B Inductor A has a diameter of 5.30 cm; inductor B has a diameter of 6.36 cm And you conduct the...

  • Suppose that you are supplied with this equipment 4. Inon-ideal battery (with internal resistance r 0.012 ), plus 2...

    Suppose that you are supplied with this equipment 4. Inon-ideal battery (with internal resistance r 0.012 ), plus 2 switches and plenty of wire (of negligible resistance). I parallel-plate capacitor, initially uncharged. 4 identical ohmic resistors, each with resistance R 400 Q 2 solenoid inductors, with inductance values L and Ly, respectively. Inductor A is half as long as inductor B Inductor A has a diameter of 5.30 cm; inductor B has a diameter of 6.36 cm And you conduct...

  • 4 part question? In the figure, R = 122, C =8 pF, and L = 3...

    4 part question? In the figure, R = 122, C =8 pF, and L = 3 mH, and the ideal battery has emf = 32 V. The switch is kept in position a for a long time and then thrown to position b. What are www HE R E a 수 b C L mo (a) the maximum charge in the capacitor plates? Select one: a. 256.00 C b. 96.00 C c. 32.00 LC d. 24.00 C e. 0.20 C...

  • 4) Midterm question Problem 2 (30 points) C=30 uF The air capacitors with C=Cq=3.0 MF, C=2.04F...

    4) Midterm question Problem 2 (30 points) C=30 uF The air capacitors with C=Cq=3.0 MF, C=2.04F and C3= 1.0F are connected to a Vo battery as shown. If the charge on C2 is Q2=20.0 C, | ,2015 Foton C1.0 F (a) (15 pts. Find the equivalent capacitance of the circuit. (b) (15 pts.) Find V. 1) A charge Q is placed on a capacitor of capacitance C=C. The capacitor is then, connected to a resistor and another capacitor of capacitance...

  • Engineering circuit analysis by Hayt 8th edition question 27 and figure 9.43 I think 10u(1-t) means 10 (for t<1)...

    Engineering circuit analysis by Hayt 8th edition question 27 and figure 9.43 I think 10u(1-t) means 10 (for t<1) and 0 (for t>1) then, I can't remove this current source because it continuously make 10micro A (at t=500ms, t=1.002ms) I don't know what's wrong now.. 366 26. For the circuit of Fig. 9,43, 1 30-) mA. (a) Select R, so th O)6 V (b) Compute e2 ms). (c) Determine the settling, time of t capacitor voltage. (d) Is the inductor...

  • We calculated the capacticance of our capacitior in farads and we have to compare it to...

    We calculated the capacticance of our capacitior in farads and we have to compare it to the listed capacitance of the capacitor as shown in the picture. When we do percent difference we get 200%... where did I mess up? That can't be right. The resistance of our resistor is 12970 ohms. Please explain this like you were talking to a child. Amicon 26936KO (M) 2000 F25V 81-POLAR NPS wire leads of the resistor to the table the body of...

  • ANSWER ALL PLEASE Question 35 2 pts A charged particle (with q = 1.0 x 10-2...

    ANSWER ALL PLEASE Question 35 2 pts A charged particle (with q = 1.0 x 10-2 C) that is moving through a uniform magnetic field has a velocity v = (6.0 x 105m/s) i + (4.0 x 105m/s) k when it experiences a force F due to the magnetic field. If B = (-3.0 x 10-3T)i + (4.0 x 10-3T)j + (5.0 x 10-3T)k, calculate the force, in N (in terms of unit vectors). Equation: F=qvxB OF=-(3.0 N)i - (6.0N)j...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT