Question

All surfaces are frictionless except the horizontal surface beneath block B 20° 120 80 th 40.2 a. Draw a FBD of the figure ab

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2olb Nax . Alsin 20 127.70北 N12.otb 200 Σ5tep: 123.30 Sin20-0.2 (200) to:

Add a comment
Know the answer?
Add Answer to:
All surfaces are frictionless except the horizontal surface beneath block B 20° 120 80 th 40.2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 6.00-kg block is in contact with a 4.00-kg block on a horizontal frictionless surface as...

    A 6.00-kg block is in contact with a 4.00-kg block on a horizontal frictionless surface as shown in the figure. The 6.00-kg block is being pushed by a horizontal 20.0-N force as shown. 1. 20.0 6.00 4.00 kg kg A) Draw free-body diagram and write the equation of motion for the 6.0kg block Free-Body Diagram X: Y: B) Draw free-body diagram and write the equation of motion for the 4.0kg block X: Free-Body Diagram Y: C) What is the common...

  • Blocks A and B are on a frictionless horizontal surface. Block A is to the left...

    Blocks A and B are on a frictionless horizontal surface. Block A is to the left of block B. Block A has a mass of 2.5 kg and B has a mass of 1.3 kg. Block A is struck from the left with a hammer. The average force of this impact is 65 N and lasts for 0.12 seconds. Block A slides to the right, strikes and sticks to block B. The two blocks then slide to the right together....

  • Blocks A and B are on a frictionless horizontal surface. Block A is to the left...

    Blocks A and B are on a frictionless horizontal surface. Block A is to the left of block B. Block A has a mass of 2.5 kg and B has a mass of 1.3 kg. Block A is struck from the left with a hammer. The average force of this impact is 65 N and lasts for 0.12 seconds. Block A slides to the right, strikes and sticks to block B. The two blocks then slide to the right together....

  • A block with mass M rests on a frictionless surface and is connected to a horizontal...

    A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall (Fig. P14.68). A second block with mass m rests on top of the first block. The coefficient of static friction between the blocks is ms. Find the maximum amplitude of oscillation such that the top block will not slip on the bottom block. Suppose the two blocks are...

  • A massive steel cable drags a 20 kg block across a horizontal, frictionless surface A 120...

    A massive steel cable drags a 20 kg block across a horizontal, frictionless surface A 120 N force applied to the cable causes the block to reach a speed of 4 1 m/s in a distance of 2.1 m. What is the mass of the cable' Express your answer to two significant figures and Include the appropriate units.

  • A 6.00-kg block is in contact with a 4.00-kg block on a horizontal frictionless surface as...

    A 6.00-kg block is in contact with a 4.00-kg block on a horizontal frictionless surface as shown in the figure. The 6.00-kg block is being pushed by a horizontal 20.0-N force as shown. a. What is the acceleration of the blocks? b. What is the magnitude of the force of the 6.00-kg block on the 4.00-kg block? c. What is the magnitude of the force of the 4.00-kg block on the 6.00-kg block? d. What is the net force on...

  • Problem 4 A block of mass m slides at velocity vo across a horizontal frictionless surface...

    Problem 4 A block of mass m slides at velocity vo across a horizontal frictionless surface toward a large curved movable ramp n and has a smooth circular frictionless face up which the block can easily slide. When the block slides up the ramp, it momentarily reaches a maximum height a shown in Figure II, and then slides back down the frictionless surface as shown in Figure III. face to the horizontal (a) Find the velocity of the ramp at...

  • A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a...

    A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a speed 4.20 m/s, makes a perfectly elastic collision with a block of mass M at rest. After the collision, the 8.40 kg block recoils with a speed of 0.400 m/s. In the figure, the blocks are in contact for 0.200 s. What is the magnitude of the average force on the 8.40 kg block, while the two blocks are in contact?

  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

  • Identifying and Drawing Force Vectors (No Calculator) FN Surface Force perpendicular to Eill in the table...

    Identifying and Drawing Force Vectors (No Calculator) FN Surface Force perpendicular to Eill in the table and draw a FBD for each of the following casesTe the surface. object is in BOLD letter Fr- Friction (Surface force parallel to the surface; opposes motion). We will only consider siding friction FA- Applied force. = Force towards the center of Q1. The surface is rough and the block speeds up. Q2. The crate is held by the rope on a smooth surface...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT