Question

10mksl Question 1(a) C(s) G,s) H(s) Figure A3.1. System for Question 1(a) Figure A3.1 shows a closed loop control system. Obtain the closed loop transfer function of the system C(z)/R(z) and the continuous time output c(t) expression of the system.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
10mksl Question 1(a) C(s) G,s) H(s) Figure A3.1. System for Question 1(a) Figure A3.1 shows a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • C(8) for the system shown in Figure 1. R(S Find the equivalent transfer function, Geg (s)...

    C(8) for the system shown in Figure 1. R(S Find the equivalent transfer function, Geg (s) 1 Cix) Figure 1. Block diagram 2s+1 s(5s+6Ge(s) = and Figure 2 shows a closed-loop transfer function, where G(s) 2. proper H(s) K+s. Find the overall closed-loop transfer function and express is as rational function. C(s) Ea (s) Controller R(s) +/ Plant G(s) Ge (s) Feedback H(s) Figure 2. Closed loop transfer function Construct the actuation Error Transfer Function associated with the system shown...

  • Example 3.3.1 A control system shown in following Figure G(s)=(s+1) C(s) N(s) E(s) G,(S) R(s) S...

    Example 3.3.1 A control system shown in following Figure G(s)=(s+1) C(s) N(s) E(s) G,(S) R(s) S G2(s) 100 G2(s)= s(s+10) H(s) H(s) 1 1. If n(t) 0, r(t)=5+2t+10t?, make e 0.1, k-? 2. If n(t)=t, r(t)=5+2t+10t2, k=1, e=? sS I ess0.1, k=?. Question14 A control system shown in following Figure, obtain the steady-state error transfer function E(s)/N(s). N(s) E(S) GS C(S) G.(S) R(s) H(s) Question12 Obtain both analytically and computationally the rise time, peak time, maximum overshoot, and settling time...

  • Figure 1 shows a closed-loop control system in which G(S)=40/[ (S+2) (S+3)], and H(S)=1/(S+4) R(S) E(S)...

    Figure 1 shows a closed-loop control system in which G(S)=40/[ (S+2) (S+3)], and H(S)=1/(S+4) R(S) E(S) Y(s) G(S) HS) Figure 2 shows the Nyquist plot for the open-loop transfer function. Figure 2 shows the Nyquist plot for the open-loop transfer function System: sys Real: -0.187 Imag: 2.56e-05 Frequency: (rad/s): -5.16 Using the Nyquist criterion: a) Find out the gain margin expressed in dB. Is the system stable or unstable? (25 points) b) What is the value of the gain expressed...

  • Question 6 The open-loop transfer function G(s) of a control system is given as G(8)- s(s+2)(s +5...

    Question 6 The open-loop transfer function G(s) of a control system is given as G(8)- s(s+2)(s +5) A proportional controller is used to control the system as shown in Figure 6 below: Y(s) R(s) + G(s) Figure 6: A control system with a proportional controller a) Assume Hp(s) is a proportional controller with the transfer function H,(s) kp. Determine, using the Routh-Hurwitz Stability Criterion, the value of kp for which the closed-loop system in Figure 6 is marginally stable. (6...

  • Question 1 a) Define the term transfer function in relation to a linear control system. [5...

    Question 1 a) Define the term transfer function in relation to a linear control system. [5 marks] Figure Q1 shows a block diagram of a feedback control system, with a plant with transfer function G(s) , a controller with transfer function C(s) , and a sensor with transfer function H(s) . b) Derive from first principles the closed loop transfer function G (s) cl from the reference signal r(t) , to the output signal y(t) . [5 marks] c) Give...

  • Figure 1 shows a closed-loop control system in which G(S)=40/[ (S+2) (S+3)], and H(S)=1/(S+4) R(3) +...

    Figure 1 shows a closed-loop control system in which G(S)=40/[ (S+2) (S+3)], and H(S)=1/(S+4) R(3) + E(S) Y() G(s) H(S) Figure 2 shows the Nyquist plot for the open-loop transfer function. Nywist Diagram Systems imag: 2.5606 FC-56 THVL AM On RAH System: sys Real: -0.187 Imag: 2.56e-05 Frequency: (rad/s): -5.16 Figure 2 shows the Nyquist plot for the open-loop transfer function. Nyulat Diagram 05 Systems imag: 250 os ghar Axle 5.10 05 System: sys Real: -0.187 Imag: 2.56e-05 Frequency: (rad/s):...

  • Q2 (a) Consider the control system shown in Figure Q1 (a). Obtain the closed-loop transfer function...

    Q2 (a) Consider the control system shown in Figure Q1 (a). Obtain the closed-loop transfer function of this system and by using MATLAB obtain the unit step response of this closed loop system - R(S) c(s) 36+1) (s + 1) Figure Q2 (a) (b) A sampler and a zero-order hold element were inserted into the system in Figure Q1(a) as shown in Figure Q1(b). Obtain the closed-loop pulse transfer function of this system and by using MATLAB or otherwise, obtain...

  • Figure 1 shows a closed-loop control system in which G(S)=40/[ (S+2) (S+3)], and H(S)=1/(S+4) R(3) E(s)...

    Figure 1 shows a closed-loop control system in which G(S)=40/[ (S+2) (S+3)], and H(S)=1/(S+4) R(3) E(s) Y(s) G(s) H(s) Figure 2 shows the Nyquist plot for the open-loop transfer function. NON BH Figure 2 shows the Nyquist plot for the open-loop transfer function. NOM & NON System: sys Real: -0.187 Imag: 2.56e-05 Frequency: (rad/s): -5.16 structure.com/courses/68755/quizzes/411964/take S 2 NA System: sys Real: -0.187 Imag: 2.56e-05 Frequency: (rad/s): -5.16 Using the Nyquist criterion: a) Find out the gain margin expressed in...

  • question b or the control system in Figure 1: C(s) Find the closed-loop transfer function T(s)-- R(s) a) b) Find a...

    question b or the control system in Figure 1: C(s) Find the closed-loop transfer function T(s)-- R(s) a) b) Find a value of Kp that will yield less than 15% overshoot for the closed-loop system. (Note: ignore the zero dynamics to calculate Kp initially). c IIsing vour K from nart h) write a MATI AR scrint that calculates the closedloon Motor Plant R(s)+ C(s) Controller 10 Kp (s+9) s2 +6s15 12 Figure 1: Unity feedback with PD control or the...

  • Figure 1 shows a closed-loop control system in which G(S)-40/1 (5+2) (5+3)], and H(S)-1/15+4) R(s) E(S)...

    Figure 1 shows a closed-loop control system in which G(S)-40/1 (5+2) (5+3)], and H(S)-1/15+4) R(s) E(S) Y(5) G(s) H(s) Figure 2 shows the Nyquist plot for the open-loop transfer function. Systemsys Real: -0.187 Imag: 2.56e-05 Frequency: (rad/s): -5.16 Using the Nyquist criterion a) Find out the gain margin expressed in dB. Is the system stable or unstable? (25 points) b) What is the value of the gain expressed in dB that makes the system marginally stable?(25 points)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT