Question

Question 6 The open-loop transfer function G(s) of a control system is given as G(8)- s(s+2)(s +5) A proportional controller

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Hels)kp RE) fovmula usedh 564)(sts)JAYANT DATE 2. ĐỊsts) 5VIJAYANT PAGE NO DATLBased ontKp in pad (a) l5) famuda 5(s+2)(s+s) (s+2) (sts) ris)undompedVJAYANT PAGE NO DATE IO svin Lo ラ So PIDVLUAYANT PAGE NO DATE . D-6池上4 To Iki-= 42.231 8 tk Tel 0-2-13

Add a comment
Know the answer?
Add Answer to:
Question 6 The open-loop transfer function G(s) of a control system is given as G(8)- s(s+2)(s +5...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus...

    Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus Plots and Routh- Hurwitz Criterion ofStability A unit feedback control system is to be stabilized using a Proportional Controller, as shown in Figure Q2.1. Proportional Controller Process The process transfer function is described as follows: Y(s) G(s) s2 +4s 100 s3 +4s2 5s 2 Figure Q2.1 Your task is to investigate the stability of the closed loop system using s-domain analysis by finding: a)...

  • 3. For the feedback control system shown in Figure Q3 below, the forward-path transfer function given...

    3. For the feedback control system shown in Figure Q3 below, the forward-path transfer function given by G(s) and the sensor transfer function is given by H(s). R(s) C(s) G(s) H(s) Figure Q3 It is known that G(s) -- K(+20) S(+5) H(s) = and K is the proportional gain. (S+10) i. Determine the closed-loop transfer function and hence the characteristic equation of the system. [6 marks] ii. Using the Routh-Hurwitz criterion, determine the stability of the closed-loop system. Determine the...

  • 4.35 Consider the feedback control system with the plant transfer function G(s) = (5+0.1)(5+0.5) (a) Design...

    4.35 Consider the feedback control system with the plant transfer function G(s) = (5+0.1)(5+0.5) (a) Design a proportional controller so the closed-loop system has damping of 5 = 0.707. Under what conditions on kp is the closed-loop system stable? (b) Design a PI controller so that the closed-loop system has no over- shoot. Under what conditions on (kp, kt) is the closed-loop system is stable? (©) Design a PID controller such that the settling time is less than 1.7 sec.

  • QS. (a) A system has the transfer function 5+1 G(s) s'+33-10s - 24 Use the Routh-Hurwitz...

    QS. (a) A system has the transfer function 5+1 G(s) s'+33-10s - 24 Use the Routh-Hurwitz stability check to determine whether this system is stable or not stable, and state why. [10 marks] (b) Consider the system shown in Figure 5.1, where R(s) is the system input, Y(s) is the system output, K, represents a proportional controller, G(s)=- s? +45 +8 1 and - 5 R(5) Y(s) K G(s) H(s) ) Figure 5.1 Determine the range of values of the...

  • 4) A unity feedback control system shown in Figure 2 has the following controller and process with the transfer functions: m(60100c Prs(s +10(s+7.5) a) Obtain the open- and closed-loop transfer f...

    4) A unity feedback control system shown in Figure 2 has the following controller and process with the transfer functions: m(60100c Prs(s +10(s+7.5) a) Obtain the open- and closed-loop transfer functions of the system. b) Obtain the stability conditions using the Routh-Hurwitz criterion. e) Setting by trial-and-error some values for Kp, Ki, and Ko, obtain the time response for minimum overshoot and minimum settling time by Matlab/Simulink. Y(s) R(s) E(s) Fig. 2: Unity feedback control system 4) A unity feedback...

  • 6. At the local nuclear power plant, your boss wants you to use the Ziegler Nichols...

    6. At the local nuclear power plant, your boss wants you to use the Ziegler Nichols ultimate gain approach to design a PID controller. For some reason though, he doesn't want you to hook up a feedback loop and find the gain that results in marginal stability. The plant (at the nuclear power plant) is G(s) = s[(s+3)² +36] Your knowlege of the root locus and Routh-Hurwitz methods can help you to find Ky and Pu for the Ziegler Nichols...

  • 1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controll...

    1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controller Sketch (by hand) and fully label a Nyquist plot with K-1 for each of the plants listed below.Show all your work. Use the Nyquist plot to determine all values of K for which the closed-loop system is stable. Check your answers using the Routh-Hurwitz Stability Test. [15 marks] (a) P(s)-2 (b) P(s)-1s3 (c) P(s) -4-8 s+2 (s-2) (s+10) 1. Consider the usual unity-feedback closed-loop control system with a...

  • Implement a PID controller to control the transfer function shown below. The PID controller and plant...

    Implement a PID controller to control the transfer function shown below. The PID controller and plant transfer function should be in a closed feedback loop. Assume the feedback loop has a Gain of 5 associated with it i.e. . The Transfer function of a PID controller is also given below. Start by: 6. Implement a PID controller to control the transfer function shown below. The PID feedback loop has a Gain of 5 associated with it i.e. (HS) = 5)....

  • show steps please 10 A second-order open-loop system with transfer function G(s) = is to be...

    show steps please 10 A second-order open-loop system with transfer function G(s) = is to be $2+45+10 controlled with unity negative feedback. (a) Derive the error transfer functions E(s) of the closed-loop system subjected to a unit step input, when using a P controller and a PI controller, respectively, in terms P control gain kp, and PI control gains kp and ki, respectively. [7] (b) Determine the steady-state errors in (a). Briefly comment on the differences in control performance by...

  • Consider the feedback sy PID COntroller Plant R(S) Y(s) the closed-loop transfer function T(s) = Y...

    Consider the feedback sy PID COntroller Plant R(S) Y(s) the closed-loop transfer function T(s) = Y controller (Kp Find er p 1, Ks K ) and show that the system is marginally stable with two imaginary roots. (s)/R(s) with no sabl thosed-loop transfer function T(s) Y (S/R(s) with the (three- term) PID controller added to stabilize the system. suming that Kd 4 and K, -100, find the values (range) of Kp that will stabilize the system.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT