Question

eriod Name Date HW 11:2 Electrostatic Potential 3. Two parallel plates are arranged as shown to the right. The. E electric field between the plates is uniform and is directed from the positive plate to the negative plate as shown. The electric l← e field strength is E - 60,000 N/C and the two plates are d 6.00 cm apart. A particle which has a charge of q =-0.01 50μC is initially placed at point A. a. How much work would have to be done to move this particle1.00cm B from point A to point B? 6.00cm b. What is the potential difference between point A and point B? c. How much work would have to be done in moving this particle from point A to point C? d. What is the potential difference between points B and C? Suppose that another particle, which has a charge of 2.00 μC, is placed, initially, on the negative plate. This particle is then moved from the negative plate to the positive plate. e. How much work would be done in moving this particle from the negative plate to the positive plate? f. What will be the potential difference between these two plates? 149 Honors Physics by James J. Kovalcin 2004, published by TEACHING point as part of the Expert Systems for TeachersT Series

0 0
Add a comment Improve this question Transcribed image text
Answer #1

and 0 2

Add a comment
Know the answer?
Add Answer to:
eriod Name Date HW 11:2 Electrostatic Potential 3. Two parallel plates are arranged as shown to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The potential difference between the two parallel plates shown in the drawing is 200 V. The...

    The potential difference between the two parallel plates shown in the drawing is 200 V. The distance between the plates is 0.03 meters. A particle (mass = 1 x 10-3 kg) with a charge of +5 C is released from rest at the positive plate. (a) What is the kinetic energy of the particle when it strikes the negative plate? (5 pt) (b) What is the speed of the particle when it strikes the negative plate? (10 pt) (e) What...

  • A)A pair of oppositely charged parallel plates is separated by 5.52 mm. A potential difference of...

    A)A pair of oppositely charged parallel plates is separated by 5.52 mm. A potential difference of 610 V exists between the plates. What is the strength of the electric field between the plates? The fundamental charge is 1.602 × 10−19 . Answer in units of V/m. B)What is the magnitude of the force on an electron between the plates? Answer in units of N. C)How much work must be done on the electron to move it to the negative plate...

  • Oppositely charged parallel plates are separated by 3.53 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 3.53 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? (b) What is the magnitude of the force on an electron between the plates? (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.72 mm from the positive plate?

  • Oppositely charged parallel plates are separated by 6.50 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 6.50 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.98 mm from the positive plate?

  • Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.95 mm from the positive plate? J

  • Oppositely charged parallel plates are separated by 3.95 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 3.95 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? ______ N/C (b) What is the magnitude of the force on an electron between the plates? _______N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 3.08 mm from the positive plate? _________ J

  • Oppositely charged parallel plates are separated by 5.12 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 5.12 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? ................... N/C (b) What is the magnitude of the force on an electron between the plates? .................. N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.88 mm from the positive plate? .................. J

  • Oppositely charged parallel plates are separated by 5.78 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 5.78 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? __ N/C (b) What is the magnitude of the force on an electron between the plates? __ N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.94 mm from the positive plate? __ J

  • Oppositely charged parallel plates are separated by 5.72 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 5.72 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.95 mm from the positive plate? J

  • Two facing surfaces of two large parallel conducting plates separated by 8.5 cm have uniform surface...

    Two facing surfaces of two large parallel conducting plates separated by 8.5 cm have uniform surface charge densities such that are equal in magnitude but opposite in sign. The difference in potential between the plates is 440 V (a) Is the positive or the negative plate at the higher potential? the positive plate the negative plate (b) What is the magnitude of the electric field between the plates? 5.17 kV/mm (c) An electron is released from rest next to the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT