Question

7 of 10 Constants An LRC circuit is connected to a 11.5-kHz, 785-V (rms source, L 28.0 mH, R 8.80 k, and C 6150 pF Part A Det
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2n fl 20.23·18.. Capacitive Reactunate Xc 8802-93 n 8 80 で 三一1.438 oms 78s

Add a comment
Know the answer?
Add Answer to:
7 of 10 Constants An LRC circuit is connected to a 11.5-kHz, 785-V (rms source, L...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An LRC circuit is connected to a 12.5 kHz, 735-V (rms) source, L = 26.0 mH,...

    An LRC circuit is connected to a 12.5 kHz, 735-V (rms) source, L = 26.0 mH, R = 8.80 kN and C = 6450 pF Part A Determine the total impedance xpress your answer to three significant figures and include the appropriate units. HÅ 2 - 881 12 Submit Previoun Answers Resvest Answer * Incorrect; Try Again; 5 attempts remaining Part 3 Determine the phase angle Express your answer using three significant figures. | ΑΣφ Submit Bequest Answer Submit Request...

  • An LRC circuit is connected to a 10.5-kHz, 725-V (ms) source, L = 26.0 mH, R...

    An LRC circuit is connected to a 10.5-kHz, 725-V (ms) source, L = 26.0 mH, R = 8.20 kN and C = 6250 pF. Part A Determine the total impedance. xpress your answer to three significant figures and include the appropriate units. ? HAR Value O Units 2. Submit Request Answer Part B Determine the phase angle. Express your answer using three significant figures. 90 AED Om ? Submit Request Answer Part C Determine rms current. Express your answer to...

  • Problem 21.64 An LRC circuit is connected to a 12.5-kHz, 735-V (rms) source, L = 26.0...

    Problem 21.64 An LRC circuit is connected to a 12.5-kHz, 735-V (rms) source, L = 26.0 mH, R =8.80 kN, and C = 6450 pF. Part B Determine the phase angle Express your answer using three significant figures. 190 AED -0.008068 Submit Previous Answers Request Answer * Incorrect; Try Again; 3 attempts remaining Part C Determine rms current Express your answer to three significant figures and include the appropriate units. ? XS 010 x 10" DE 1.- 118.11.10 А You...

  • An LRC circuit is connected to a 12.0-kHz, 785-V (rms) source, L = 25.0 mH ,...

    An LRC circuit is connected to a 12.0-kHz, 785-V (rms) source, L = 25.0 mH , R = 8.30 kΩ , and C = 6250 pF Part A: Determine the total impedance. Part B: Determine the phase angle. Part C: Determine rms current.

  • Three loads are connected in parallel across a V. = 345 Z0° V (rms) line and...

    Three loads are connected in parallel across a V. = 345 Z0° V (rms) line and fed from a line having a series impedance 0.2 + 0.05 12, as shown in (Figure 1). Load 1 absorbs 3 kW at unity power factor; Load 2 absorbs 5 kVA at 0.8 leading; Load 3 absorbs 5 kW and delivers 6 kVAR. Part A Calculate the rms value of the voltage (V3) at the sending end of the line. Figure ① 1 of...

  • \ Problem 6 Consider the circuit shown in (Figure 1). Suppose that V, = 480_0°V (rms)....

    \ Problem 6 Consider the circuit shown in (Figure 1). Suppose that V, = 480_0°V (rms). Part A Find the average power dissipated in the line in the figure Express your answer three significant figures and include the appropriate units. HHA ? P = Value Units Submit Request Answer Part B Figure 1 of 1 > Find the capacitive reactance that, when connected in parallel, with the load will make the load look purely resistive. Express your answer three significant...

  • Consider the circuit shown in (Figure 1). Suppose that V, = 415 0°V (rms). 4 Ω...

    Consider the circuit shown in (Figure 1). Suppose that V, = 415 0°V (rms). 4 Ω ν j3ΩΙ 120 Ω + j90 Ω Source- Line - Load Find the average power dissipated in the line in the figure. Express your answer to three significant figures and include the appropriate units. t НА ? ? P= Value Units Find the capacitive reactance that, when connected in parallel, with the load will make the load look purely resistive. Express your answer to...

  • Constants Consider an RC circuit with R = 8.10 k22, C = 1.50 uF. The rms...

    Constants Consider an RC circuit with R = 8.10 k22, C = 1.50 uF. The rms applied voltage is 120 V at 60.0 Hz. Part A What is the rms current in the circuit? Express your answer to three significant figures and include the appropriate units. μΑ Irms Value Units Submit Request Answer Part B What is the phase angle between voltage and current? Part B What is the phase angle between voltage and current? Express your answer using three...

  • R1 = 49.7 Ohms, C1 = 1.60 uF Using the circuit shown in (Figure 1), design a narrow band bandreject filter having a center frequency of 4 kHz and a quality factor of 10. Base the design on igure 1 of...

    R1 = 49.7 Ohms, C1 = 1.60 uF Using the circuit shown in (Figure 1), design a narrow band bandreject filter having a center frequency of 4 kHz and a quality factor of 10. Base the design on igure 1 of 2 (> (1-o)R Figure 2 of 2 l6 RI R3 RC 2 Rs Part C Determine the resistance R2 in the filter Express your answer to three significant figures and include the appropriate units R2Value Units Submit Request Answer...

  • Please answer all parts Consider the circuit shown in (Figure 1). Suppose that Ve = 50070°V...

    Please answer all parts Consider the circuit shown in (Figure 1). Suppose that Ve = 50070°V (rms). Express your answer to three significant figures and include the appropriate units. View Available Hint(s) IT HA ? 21 = Value Units Submit Part D Find the average power dissipated in the line when the capacitive reactance is connected across the load. Express your answer to three significant figures and include the appropriate units. THA th ? P- Value Units Submit Request Answer...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT