Question

Q2) A constant heat flux (a -50 W/m2) is applied to a 1-D plane wall (k - 0.4 W/m K) on one side. The other side is subjected to convective boundary condition (h- 10 W/m? .K.Tm-25°C). A volumetric heat (q = 300 W/m*) is generated in the plane wall. If the plane wall has a thickness of L = 100 mm, a) Calculate surface temperatures T(x 0) and T(xL). b) Determine the location of the maximum temperature in the slab. c) Draw the temperature distribution in the slab. Plane wall to h,T

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Q2) A constant heat flux (a -50 W/m2) is applied to a 1-D plane wall (k...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A concrete slab (k = 1.4 W/m·K) is subjected to a heat flux of 450 W/m2....

    A concrete slab (k = 1.4 W/m·K) is subjected to a heat flux of 450 W/m2. The slab sits on the ground, which is at a temperature of -8°C, and it is desired to keep the temperature at the upper surface of the slab at 20°C. Determine the thickness of the slab. Ans: (a) L=

  • Problem 2: Consider a large plane slab of semi-thickness L = 0.3 m, thermal conductivity k...

    Problem 2: Consider a large plane slab of semi-thickness L = 0.3 m, thermal conductivity k = 2.5 W/m K and surface area A = 20.0 m². Both sides of the slab is maintained at a constant wall temperature of 358°K while it is subjected to a uniform but constant heat flux of 950.0 W/m2 Evaluate the temperature distribution/profile within the wall. Calculate the heat flux and temperature at location x = 0.1m. Problem 3: Consider a 10.0 m long...

  • P1 (50 pts.) - A large plane wall has a thickness L-60 cm and thermal conductivity...

    P1 (50 pts.) - A large plane wall has a thickness L-60 cm and thermal conductivity k 25 W/m-K. On the left surface (x-0), it is subjected to a uniform heat flux qo while the surface temperature To is constant. On the right surface, it experiences convection and radiation heat transfer while the surface temperature is TL-225°C and the surrounding temperature is 25°C. The emissivity and the convection heat transfer coefficient on the right surface are 0.7 and 15 W/m2-K,...

  • Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity...

    Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity 25 W/m-K and thickness 60 mm. The wall is exposed to convection on both sides, with different heat transfer coefficients and temperatures as shown. There are straight rectangular fins on the right-hand side of the wall, with dimensions as shown (L =20 mm) and thermal conductivity of 250 W/m-K. What is the maximum temperature that will occur in the wall? L tt-2 mm k=25...

  • 2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The...

    2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The wall is 20 cm thick and has a surface area of 10 m2. One side of the wall is exposed to outside air blowing against the wall resulting in a heat transfer coefficient of 20 W/(m2-K). The other side is exposed to an air-conditioned room with a convective heat transfer coefficient of 5 W/(m2-K). a. What are the thermal resistances corresponding to conduction through...

  • NE Steel tubes (k =35 W/m2.K) of 400-mm inner diameter and 30-mm wall thickness are used...

    NE Steel tubes (k =35 W/m2.K) of 400-mm inner diameter and 30-mm wall thickness are used to route superheated steam from the boller to the turbine in a power plant. Safety and economic concerns make it practical to add a 200-mm layer of Insulation (k =0.1 W/mK) to each tube, which is wrapped in a thin sheet of aluminum with an emissivity e =0.15. The air (with a convective coefficient h =5 W/m2K) and wail temperatures of the plant are...

  • The heat generation rate in a plane wall of 0.24 m thickness is 0.4 MW/m3 ....

    The heat generation rate in a plane wall of 0.24 m thickness is 0.4 MW/m3 . The wall is exposed on both sides to convection at 30°C. (a) Determine and compare the maximum temperatures for k = 25, k = 50, k = 200 and k = 410 W/mK assuming h = 250 W/m2K. (b) Determine and compare the maximum temperature for h = 50, 250, 500 and 1000 W/m2K with k = 25 W/mK.

  • Problem Wall with Strip Heater The air inside a chamber is measured to be 50C and used to convectively heat a wall (h 2...

    Problem Wall with Strip Heater The air inside a chamber is measured to be 50C and used to convectively heat a wall (h 20 w/m2 K). The wall (thermal conductivity of 4 W/m K) is 200 mm thick and has a uniform heat generation of 1000 W/m2. To prevent any heat generated within the wall from being lost to the outside of the chamber a very thin electrical strip heater is placed on the outer wall to provide a uniform...

  • A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform...

    A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces  (x=-L, +L), each of which is exposed to a fluid of temperature ∞T∞= 20°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x)=a+b⁢x+c⁢x2 where a= 82.0°C, b= -210°C/m, c= -2 × 104°C/m2, and x is in meters. The origin of the x-coordinate...

  • The heat generation rate in a plane wall of 0.24 m thickness is 0.4 MW/m^3. The...

    The heat generation rate in a plane wall of 0.24 m thickness is 0.4 MW/m^3. The wall is exposed on both sides to convection at 30°C. a) Determine and compare the maximum temperatures for k=25, k=50, k=200 and k= 410 W/mK assuming h=250W/m^2 K. b) Determine and compare the maximum temperatures for h=50, 250, 500 and 1000 W/m^2K with k =W/mK

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT