Question

Your answer is partially correct. A wheel of radius 0.486 m is mounted on a frictionless horizontal axis. The rotational iner
0 0
Add a comment Improve this question Transcribed image text
Answer #1

. for block P-3-52N P= 3-5AN 30, 3.52 - TS 2.91 a cil I . forcohead Y . M=IM=Iq Tor= I a T= Ia erini 2.919. So, 3:52 3 .5 2

Add a comment
Know the answer?
Add Answer to:
Your answer is partially correct. A wheel of radius 0.486 m is mounted on a frictionless...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure below, a wheel of radius 0.15 m is mounted on a frictionless horizontal...

    In the figure below, a wheel of radius 0.15 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 2.0 kg box that slides on a frictionless surface inclined at angle θ = 25° with the horizontal. The box accelerates down the surface at 2.1 m/s2. What is the rotational inertia of the wheel about the axle? ______ kg · m2 In the figure below, a wheel of radius 0.15...

  • A wheel (radius = 0.30 m) is mounted on a frictionless, horizontal axis. A light cord...

    A wheel (radius = 0.30 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object. When released from rest the object falls with a downward acceleration of 5.0 m/sec. 111 TL LLLL 17. Find the tension on the cord. 18. Find the angular acceleration of the wheel. 19. Find the moment of inertia of the wheel. mg

  • A device is made of a wheel with an inner drum and is mounted on a...

    A device is made of a wheel with an inner drum and is mounted on a frictionless axle so it does not translate but can rotate about its centre. As indicated in the figure, this device is used to lift a 30.0 kg box. The outer radius R of the device is 0.500 m and the radius of the inner drum is 0.200 m. A constant horizontal force F of magnitude 140 N is applied horizontally, as shown, to a...

  • A uniform disc with mass M and radius R = 0.10 m is mounted on a...

    A uniform disc with mass M and radius R = 0.10 m is mounted on a frictionless, horizontal axle, as shown in the figure. The light cord wrapped around the disk is pulled so that it has a constant tension of T = 20.0 N. Starting from the rest, the disk performs a rotational motion with a constant angular acceleration a = 2 rad/s2 Find mass M of the disk. (Note that the moment of inertia of the disk is...

  • A disk-shaped (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord...

    A disk-shaped (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object. When released from rest the object falls with a downward acceleration of 5.0 m/s^2. What is the mass of the pulley? Please show all the steps and diagram.

  • A 12.0 kg object is attached to a cord that is wrapped around a wheel of...

    A 12.0 kg object is attached to a cord that is wrapped around a wheel of radius 10.0 cm. The acceleration of the object down the frictionless incline is measured to be 2.00 m/s2. Assuming the axis of the wheel to be frictionless, determine a) the tension in the rope, b) the moment of inertia of the wheel, and c) the angular speed of the wheel 2.00 s after it begins rotating, starting from rest. A 12.0 kg object is...

  • 1. A pulley (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A nearly...

    1. A pulley (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A nearly massless string is wrapped around the pulley and supports a hanging mass of 0.55kg. When released from rest the mass falls with a downward acceleration of 5.1 m/s. What is the moment of inertia of the pulley? (8pts) el (@9

  • 4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates...

    4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates about a vertical axis on frictionless bearings. A massless cord passes around the equator of the sphere, over a pulley of rotational inertia 1-1.60 kg. m2, and radius r = 0.40 m, and is attached to a block of mass m 8.00 kg which is released from rest. The cord does not slip on the sphere or pulley, and the pulley bearings are frictionless....

  • A cord s wrapped around the rim of a solid uniform wheel 0.22 m in radius and of mass 8.60 kg

    A cord s wrapped around the rim of a solid uniform wheel 0.22 m in radius and of mass 8.60 kg . A steady horizontal pull of 50.0 N to the right is exerted on the cord, pulling it off tangentially from the wheel. The wheel is mounted on frictionless bearings on a horizontal axle through its center. Part A Compute the angular acceleration of the wheelPart B Compute the angular acceleration of the part of the cord that has already been pulled...

  • In the figure, a very light rope is wrapped around a wheel o radius R =...

    In the figure, a very light rope is wrapped around a wheel o radius R = 2.0 m and does not slip. The wheel is mounted with frictionless bearings on an axle through Its center. A block of mass 14 kg is suspended from the end of the rope. When the system is released from rest it is observed that the block descends 10 m in 2.0 s. What is the moment of Inertia of the wheel?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT