Question

1. A pulley (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A nearly massless string is wrapped around the p
0 0
Add a comment Improve this question Transcribed image text
Answer #1

vema) mo {fy > T-mg = -ma at mg 9- ma Net PRR Torque , N= I4 = TR 12-a] Į p R (a) = TR I (X) = (mg-me)R I = mcg-a) RV = 0.551

Add a comment
Know the answer?
Add Answer to:
1. A pulley (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A nearly...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A disk-shaped (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord...

    A disk-shaped (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object. When released from rest the object falls with a downward acceleration of 5.0 m/s^2. What is the mass of the pulley? Please show all the steps and diagram.

  • A wheel (radius = 0.30 m) is mounted on a frictionless, horizontal axis. A light cord...

    A wheel (radius = 0.30 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object. When released from rest the object falls with a downward acceleration of 5.0 m/sec. 111 TL LLLL 17. Find the tension on the cord. 18. Find the angular acceleration of the wheel. 19. Find the moment of inertia of the wheel. mg

  • 011 10.0 points A uniform disk of radius 0.31 m is mounted on a frictionless, horizontal...

    011 10.0 points A uniform disk of radius 0.31 m is mounted on a frictionless, horizontal axis. A light cord wrapped around the disk supports a 1.5 kg object, as shown. When released from rest the object falls with a downward acceleration of 4.6 m/s?. MacBook Air r

  • In the figure below, a wheel of radius 0.15 m is mounted on a frictionless horizontal...

    In the figure below, a wheel of radius 0.15 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 2.0 kg box that slides on a frictionless surface inclined at angle θ = 25° with the horizontal. The box accelerates down the surface at 2.1 m/s2. What is the rotational inertia of the wheel about the axle? ______ kg · m2 In the figure below, a wheel of radius 0.15...

  • A mass m hangs from a string. The string is attached to a frictionless pulley of...

    A mass m hangs from a string. The string is attached to a frictionless pulley of mass M and is wrapped around it many times around it. The hanging mass is released from rest from a height h above the floor. The pulley is a uniform disk. use the rotational and linear second laws to find the acceleration of the mass as it falls. I got a = 2mg/(2m+M). Is this correct? If, so please explain

  • 3. In the figure above, a spool or pulley with moment of inertia MR2 is hanging...

    3. In the figure above, a spool or pulley with moment of inertia MR2 is hanging from a ceiling by a (massless, unstretchable) string that is wrapped around it at a radius R, while a block of equal mass M is hung on a second string that is wrapped around it at a radius r as shown. Find the magnitude of the acceleration of the the central pulley.

  • Your answer is partially correct. A wheel of radius 0.486 m is mounted on a frictionless...

    Your answer is partially correct. A wheel of radius 0.486 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is 0.0240 kg-m. A massless cord wrapped around the wheel is attached to a 2.91 kg block that slides on a horizontal frictionless surface. If a horizontal force of magnitude - 3.52 N is applied to the block as shown in the figure, what is the angular acceleration of the wheel? Take the...

  • A mass m hangs from string wrapped around a pulley of radius R. The pulley has...

    A mass m hangs from string wrapped around a pulley of radius R. The pulley has a moment of inertia I and its pivot is frictionless. Because of gravity, the mass falls and the pulley rotates. The magnitude of the torque on the pulley is.. equal to mgR Not enough information greater than mgR less than mgR

  • Problem: A pulley, consists of a disk of radius R=0.2 m and mass M= 50 kg...

    Problem: A pulley, consists of a disk of radius R=0.2 m and mass M= 50 kg is mounted on a nearly frictionless axle. A string is wrapped lightly around the pulley, and you pull on the string with a constant force, F = 100 N. If the pulley starts from rest, what is the angular speed at a time At = 1 s later? Assume that the string does not slip on the pulley. Note: Moment of inertia of a...

  • 5. Consider the system illustrated in the figure. The pulley with radius R and moment of...

    5. Consider the system illustrated in the figure. The pulley with radius R and moment of inertia I around its fixed axis is mounted on a frictionless axle which is fixed to the table. Th has one end fixed to the table, and the other end is attached to a massless inextensible rope. Th and a mass m hangs at its other end. Initially, the system is at rest e spring with stiffness constant k e rope passes over the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT