Question

A mass m hangs from a string. The string is attached to a frictionless pulley of...

A mass m hangs from a string. The string is attached to a frictionless pulley of mass M and is wrapped around it many times around it. The hanging mass is released from rest from a height h above the floor. The pulley is a uniform disk. use the rotational and linear second laws to find the acceleration of the mass as it falls.

I got a = 2mg/(2m+M). Is this correct? If, so please explain

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ㄒ 0 mma

from the force diagram for the mass "m", force equation is given as

mg - T = ma

T = mg - ma                                               eq-1

For the pulley :

I = moment of inertia of disk = (0.5) Mr2

Torque equation is given as

\tau = T r = I \alpha

Using eq-1

(mg - ma) r = (0.5) Mr2 (a/r)

mg - ma = (0.5) M a

2mg - 2ma = Ma

a = 2mg/(2m + M )

Add a comment
Know the answer?
Add Answer to:
A mass m hangs from a string. The string is attached to a frictionless pulley of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (c) A string is wrapped many times around a frictionless pulley, which is a uniform disk...

    (c) A string is wrapped many times around a frictionless pulley, which is a uniform disk of mass M. The string is connected to a hanging mass of massm. What is the speed of the hanging mass after it falls a distance h from rest? (d) A ceiling fan accelerates uniformly at a rate of 3rad/s^2 from rest. How long does it take for the acceleration of a point 1.2 m from the center to have a magnitude of 6m/s^2

  • A string is wrapped around a pulley of mass M, radius R, and moment of inertial....

    A string is wrapped around a pulley of mass M, radius R, and moment of inertial. The string is attached to a mass m; the mass m is then released. Treat the pulley as if it were a uniform disk (a) Find the acceleration of the mass m as it falls. (b) How would your answer to part (a) above change if we ignore the motion of the pulley (effectively setting the mass M -0)? m

  • 1. A pulley (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A nearly...

    1. A pulley (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A nearly massless string is wrapped around the pulley and supports a hanging mass of 0.55kg. When released from rest the mass falls with a downward acceleration of 5.1 m/s. What is the moment of inertia of the pulley? (8pts) el (@9

  • A mass m hangs from string wrapped around a pulley of radius R. The pulley has...

    A mass m hangs from string wrapped around a pulley of radius R. The pulley has a moment of inertia I and its pivot is frictionless. Because of gravity, the mass falls and the pulley rotates. The magnitude of the torque on the pulley is.. equal to mgR Not enough information greater than mgR less than mgR

  • A thin light string is wrapped around a solid uniform disk of mass M and radius...

    A thin light string is wrapped around a solid uniform disk of mass M and radius R, mounted as shown. The loose end of the string is attached to the axle of a solid uniform disc of mass m and the same radius r which is can roll down without slipping down an inclined plane that makes angle θ with the horizontal. Find the acceleration a of the rolling disc. Neglect friction in the axle of the pulley. a =...

  • Part D (Rotational Dynamics and Oscillations) Problem D1: A disk-shaped pulley has mass M = 4kg...

    Part D (Rotational Dynamics and Oscillations) Problem D1: A disk-shaped pulley has mass M = 4kg and radius R = 0.5cm. It rotates free axis. A block of mass m = 2kg hangs by a string that is tightly wrapped ar the system starts from rest. Moment of inertia of a disk is I = 2 gs by a string that is tightly wrapped around the pulley. Assume m.it rotates freely on a horizontal M 1) What is the acceleration...

  • Version 2 Part D (Rotational Dynamics and Oscillations) Problem D1: A disk-shaped pulley has mass M...

    Version 2 Part D (Rotational Dynamics and Oscillations) Problem D1: A disk-shaped pulley has mass M = 4kg and radius R=0.5cm. It rotates freely on a horizontal axis. A block of mass m = 2kg hangs by a string that is tightly wrapped around the pulley. Assume the system starts from rest. Moment of inertia of a disk is I = * 1) What is the acceleration of the block? 2) What is the angle velocity of the pulley 3s...

  • A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.96 kg and radius 1.37 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds?

  • A weight of mass 1.66 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.66 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.03 kg and radius 0.603 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds? Ignore friction and drag forces, and assume that the string does not slip.

  • A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.96 kg and radius 1.37 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds? Ignore friction and drag forces, and assume that the string does not slip.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT