Question

A mass m is tied to an ideal spring with force constant k and rests on...

A mass m is tied to an ideal spring with force constant k and rests on a frictionless surface. The mass moves along the x axis. Assume that x=0 corresponds to the relaxed position of the spring. The mass is pulled out to a position xm and released. Derive an expression for the positions at which the kinetic energy of the mass is equal to the elastic potential energy of the spring.

Express your answer in terms of Xm.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Initial potential energy = total mechanical energy

(1/2)kx2 = E

at position x,

Kinetic energy , K = (1/2)mv-

Potential energy , U = (1/2)kr

By conservation of energy

K +U= E

K+U = (1/2)kx

For K = U

U +U = (1/2)kX

20 = (1/2)kx

2(1/2)ku? = (1/2)kx

2 = x/2

x = X/V2 m and x = -X/V2 m

Add a comment
Know the answer?
Add Answer to:
A mass m is tied to an ideal spring with force constant k and rests on...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a 4.5 kg block on a horizontal frictionless surface is attached to an ideal spring whose...

    a 4.5 kg block on a horizontal frictionless surface is attached to an ideal spring whose force constant (spring constant) is 450 N. The block is pulled from its equilibrium position at x=0.000 m to a position x=+0.080 m and is released from rest. The block then executes harmonic motion along the horizontal x-axis. The maximum kinetic energy of the system is closest to _____?

  • A horizontal spring attached to a wall has a force constant of k = 800 N/m.

    A horizontal spring attached to a wall has a force constant of k = 800 N/m. A block of mass m = 1.80 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi=6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block as it passes through...

  • A horizontal spring attached to a wall has a force constant of k = 900 N/m....

    A horizontal spring attached to a wall has a force constant of k = 900 N/m. A block of mass m = 1.30 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 5.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.20 cm from equilibrium. 1.22J : Your answer is correct. (b)...

  • A mass rests on a frictionless surface and is attached to the end of a spring....

    A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring is stretched... I would appreciate to have a detailed explanation for the last one. Thank you in advance. A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring Is stretched. The mass Is then released, and It starts oscillating back and forth...

  • 9. A mass m is attached to a massless spring with a force constant k. The...

    9. A mass m is attached to a massless spring with a force constant k. The mass rests on a horizontal, frictionless surface. The system is compressed a distance x from the spring's initial position and then released. The momentum of the mass when the spring passes its equilibrium position is given by (A) xvmek (B) x/k/m o x/m/k (D) x/km + KxP = {mv² p=mv

  • 5. Buppose you have a mass m attached to a spring with constant k (N/m). The...

    5. Buppose you have a mass m attached to a spring with constant k (N/m). The mass rests on a horizontal frictionless surface. Its equilibrium position is at x -0. It is pulled aside a distance A and released. a) What is its speed as it passes the position x 0? b) What is the net force on the mass at position x- A? c) Do you expect the mass to have SHM? d) What is its speed when x...

  • A box of mass m is pressed against (but is not attached to) an ideal spring of force constant k and negligible mass, compressing the spring a distance x.

    A box of mass m is pressed against (but is not attached to) an ideal spring of force constant k and negligible mass, compressing the spring a distance x. After i is released the box slides up a frictionless incline as shown in the figure and eventually stops. If we repeat this experiment with a box of mass 2m A) the lighter box will go twice as high up the incline as the heavier box. B) both boxes will have the same...

  • A block of mass m = 6.14 kg is attached to a spring with spring constant...

    A block of mass m = 6.14 kg is attached to a spring with spring constant k = 1682 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (b) Where is the block located 3.24 s after it is released? (Give...

  • A 0.39-kg block on a horizontal frictionless surface is attached to an ideal spring

    A 0.39-kg block on a horizontal frictionless surface is attached to an ideal spring whose force constant (spring constant) is 540 N / m. The block is pulled from its equilibrium position at x=0.000 m to a displacement x=+0.080 m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis. When the block's position is x=0.057 m, its kinetic energy is closest toA. 1.0 J.B. 0.85 JC. 0.80 JD. 0.95 J.E. 1.1 J.

  • A block of mass m is 650 g which is tied to a spring whose spring...

    A block of mass m is 650 g which is tied to a spring whose spring constant is 62 N/m. The block is pulled a distance x=11 cm from its equilibrium position at x=0 on a frictionless surface and released from rest at t=0 s. What are the angular frequency, the frequency, and the period of the resulting motion? What is the amplitude of the oscillation? What is the maximum speed Vm of the oscillating block, and where is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT