Question

Problem 14. A 7-kg and a 11-kg box are suspended by a large pulley that has a mass of 3 kg and a radius of 0.15 m. The masses start 3.5 m apart, and the system is released from rest. What is the speed of the boxes when they pass one another? 11kg: 3.5m 7kg

0 0
Add a comment Improve this question Transcribed image text
Answer #1

3.5m Let the acceleration of system is a. and Tension in string is T, and T. Hence, appaying Newtons law, T-79=79 0 g-T=hla10 Hence the speed of bobes when they pass one another applying equation of motion. Taval 12=42 +298 - v2 = 02 + 2x & g x 35

Add a comment
Know the answer?
Add Answer to:
Problem 14. A 7-kg and a 11-kg box are suspended by a large pulley that has...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Am7 = 14.3 kg mass and a m2 = 11.9 kg mass are suspended by a...

    Am7 = 14.3 kg mass and a m2 = 11.9 kg mass are suspended by a pulley that has a radius of R = 11.0 cm and a mass of M = 2.98 kg, as seen in the figure below. m2 The cord has a negligible mass and causes the pulley to rotate without slipping. The pulley rotates without friction. The masses start from rest d = 3.13 m apart. Treating the pulley as a uniform disk, determine the speeds...

  • A m1 = 14.1 kg mass and a m2 = 10.6 kg mass are suspended by...

    A m1 = 14.1 kg mass and a m2 = 10.6 kg mass are suspended by a pulley that has a radius of R = 11.4 cm and a mass of M = 3.18 kg, as seen in the figure below. The cord has a negligible mass and causes the pulley to rotate without slipping. The pulley rotates without friction. The masses start from rest d = 2.79 m apart. Treating the pulley as a uniform disk, determine the speeds...

  • A m1 = 14.6 kg mass and a m2 = 11.1 kg mass are suspended by...

    A m1 = 14.6 kg mass and a m2 = 11.1 kg mass are suspended by a pulley that has a radius of R = 11.8 cm and a mass of M = 2.52 kg, as seen in the figure below. The cord has a negligible mass and causes the pulley to rotate without slipping. The pulley rotates without friction. The masses start from rest d = 3.13 m apart. Treating the pulley as a uniform disk, determine the speeds...

  • Two masses are suspended from a pulley. The pulley has a mass of 0.30 kg and...

    Two masses are suspended from a pulley. The pulley has a mass of 0.30 kg and a radius of 0.22 m. Mass one is 0.50 kg and mass two is 0.70 kg. What is the acceleration of the system?

  • A m_1 = 14.0 kg object and a m_2 = 12.0 kg object are suspended, joined...

    A m_1 = 14.0 kg object and a m_2 = 12.0 kg object are suspended, joined by a cord that passes over a pulley with a radius of 10.0 cm and a mass of 3.00 kg (Fig. P10.46). The cord has a negligible mass and does not slip on the pulley. The pulley rotates on its axis without friction. The objects start from rest 3.00 m apart. Treating the pulley as a uniform disk, determine the speeds of the two...

  • A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.96 kg and radius 1.37 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds?

  • A m1=14.0kg object and a m2 = 12.0 kg are suspended, joined by a cord that...

    A m1=14.0kg object and a m2 = 12.0 kg are suspended, joined by a cord that passes over a pulley with a radius of 10.0 cm and a mass of 3.00 kg. The cord has a negligible mass and does not slip on the pulley. The pulley rotates on its axis without friction. The objects start from rest 3.00 apart. Treating the pulley as a uniform disk, determine the speeds of the two objects as they pass each other.

  • A weight of mass 1.66 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.66 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.03 kg and radius 0.603 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds? Ignore friction and drag forces, and assume that the string does not slip.

  • A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel,...

    A weight of mass 1.03 kg is suspended by a string wrapped around a pulley wheel, which consists of a solid disk of mass 4.96 kg and radius 1.37 m. The system is released from rest. Over what vertical distance does the hanging mass move in 3.0 seconds? Ignore friction and drag forces, and assume that the string does not slip.

  • Suppose you have a system of two masses strung over a pulley. Mass 1 (6.7 kg)...

    Suppose you have a system of two masses strung over a pulley. Mass 1 (6.7 kg) hangs on the right side of the pulley suspended over the ground at height 0.8 m. Mass 2 (2.6 kg) hangs over the left side of the pulley and rests on the ground. The pulley is a uniform disk of mass m and radius 13.9 cm. When the system is released, Mass 1 moves down and Mass 2 moves up, such that Mass 1...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT