Question
4. Please answer parts c-g. Thank you

A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E40.2J and a maximum displacement from equilibrium of 0.266 m. a) What is the spring constant? 1136.29 N/m b) What is the kinetic energy of the system at the equilibrium point c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg d) What is the speed of the block when its displacement is 0.160 m? m/s (e) Find the. netic energy of the block at x 0.160 m. (n Find the potential energy stored in the spring when x = 0.160 m. (9) Suppose the same system is released from rest at x0.266 m on a rough surface so that it loses 15.7 3 by the time it reaches its first turning point (after passing equ at x-0). What is its position at that instant? Need Help?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
4. Please answer parts c-g. Thank you A horizontal block-spring system with the block on a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...

    A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 53.7 ) and a maximum displacement from equilibrium of 0.200 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? (c) If the maximum speed of the block is 3.45 m/s, what is its mass? | kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...

  • A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...

    A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 40.8 J and a maximum displacement from equilibrium of 0.261 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...

  • 1. +-7 points SerCP11132.P015 My Notes Ask Your Teacher A horizontal block-spring system with the block...

    1. +-7 points SerCP11132.P015 My Notes Ask Your Teacher A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E40.4 J and a maximum displacement from equilibrium of 0.268 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when...

  • please show formulas A horizontal block-spring system with the block on a frictionless surface has total...

    please show formulas A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E 41.8 J and a maximum displacement from equilibrium of 0.288 m. Neglect the mass of the spring a) (20 points) AFTER YOU READ THE ENTIRE PROBLEM DRAW A good physics liagram BEFORE A good physics diagram BEFORE YOU START CALCULATING. b) (20 c) (20 points) What is the kinetic energy of the system at the equilibium point? d) (20 points) If...

  • Please use the equation sheet. Write neat please. Draw a picture please (draw forces (FBD))Please show how you got the e...

    Please use the equation sheet. Write neat please. Draw a picture please (draw forces (FBD))Please show how you got the equation. Show step by step please. Box in answers please. Note: thermal expansion in (°C) gasses in (K) pressure in (pa) and volume in (m³) Q.4 A horizontal block-spring system with the block on a frictionless surface has total 30 mechanical energy equal to 47.0 J and a maximum displacement of 0.240 m from equilibrium position (a) What is the...

  • Please show all work. Thanks inn rim 0 x=A Consider the spring-mass system above. A block...

    Please show all work. Thanks inn rim 0 x=A Consider the spring-mass system above. A block of mass 4.00 kg is attached to the end of a spring with a force constant of k = 600 N/m. The spring is stretched to a position of x A, and then released to oscillate over a frictionless surface. The maximum speed achieved by the block is 3.00 m/s 2. a. What is the maximum displacement A of the spring from equilibrium (the...

  • A 750-gram block is attached to a spring as shown in the following diagram. The system is placed on a horizontal surfac...

    A 750-gram block is attached to a spring as shown in the following diagram. The system is placed on a horizontal surface. The block is released at a distance of 0.15 m from the equilibrium position at Xo. It oscillates back and forth with a frequency of 0.25 Hz. Assume that the surface is frictionless. The oscillation is an SHM. (a) Find the spring constant. (b) Find the elastic P.E. in the system when the block is at the maximum...

  • 51 A Block-Spring System A 320-g block connected to a light spring for which the force...

    51 A Block-Spring System A 320-g block connected to a light spring for which the force constant is 5.30 N/m is free to oscillate on a frictionless, horizontal surface. The block is displaced 5.10 cm from equilibrium and released from rest as in the figure. (A) Find the period of its motion. (B) Determine the maximum speed of the block. (C) What is the maximum acceleration of the block? (D) Express the position, velocity, and acceleration as functions of time...

  • 4. A 30.0 g block attached to a spring with force constant 18.0 N/m is pulled...

    4. A 30.0 g block attached to a spring with force constant 18.0 N/m is pulled from its equilibrium position to a distance of 24.0 cm and released. The block-spring system undergoes SHM without energy loss. Calculate the speed of the block when it is at [4 points] x 15.0 cm. What is the maximum speed of oscillation?

  • A 14 kg block on a horizontal surface is attached to a horizontal spring of spring...

    A 14 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 5.7 kN/m. The block is pulled to the right so that the spring is stretched 15 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 44 N. (a) What is the kinetic energy of the block when it has moved 3.0 cm from...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT