Question

A 750-gram block is attached to a spring as shown in the following diagram. The system is placed on a horizontal surface. The

0 0
Add a comment Improve this question Transcribed image text
Answer #1

when block is released 0.15 m distance from the equilibrium bosition n. Then it begain do do SHM. and eqnis, Masinut tak origyou can also find the mechanical energy by equation of 3.4.m. r- u.sinut 6-a.w cosut v-awut (%) ezwa na - voda22 Hence. Mecha

Add a comment
Know the answer?
Add Answer to:
A 750-gram block is attached to a spring as shown in the following diagram. The system is placed on a horizontal surfac...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...

    A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 53.7 ) and a maximum displacement from equilibrium of 0.200 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? (c) If the maximum speed of the block is 3.45 m/s, what is its mass? | kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...

  • A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...

    A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 40.8 J and a maximum displacement from equilibrium of 0.261 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...

  • A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10,...

    A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 9.8 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled "x=0m." The drawing also shows a small bottle located 0.080 m to...

  • A block rests on a frictionless horizontal surface and is attached to a spring. When set...

    A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 5.0 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled ''x = 0 m.'' The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring...

  • 4. Please answer parts c-g. Thank you A horizontal block-spring system with the block on a...

    4. Please answer parts c-g. Thank you A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E40.2J and a maximum displacement from equilibrium of 0.266 m. a) What is the spring constant? 1136.29 N/m b) What is the kinetic energy of the system at the equilibrium point c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg d) What is the speed of the block when its displacement...

  • A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force...

    A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 300 N/m. The block is pulled from its equilibrium position at x = 0 m to a displacement x = + 0.090 m and released from rest t=0 The block then executes SHM along the x-axis horizontal. (a) What is the maximum acceleration and velocity?

  • A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion,...

    A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 7.2 rad/s. The drawing indicates the position of the block when the spring is unstrained. This position is labeled "x = 0 m." The drawing also shows a small bottle located 0.079 m to the right of this position. The block is pulled to the right, stretching the spring...

  • 1. +-7 points SerCP11132.P015 My Notes Ask Your Teacher A horizontal block-spring system with the block...

    1. +-7 points SerCP11132.P015 My Notes Ask Your Teacher A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E40.4 J and a maximum displacement from equilibrium of 0.268 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when...

  • A block is attached to a horizontal spring and oscillates back and forth on a frictionless...

    A block is attached to a horizontal spring and oscillates back and forth on a frictionless horizontal surface at a frequency of 3.00 Hz, with an amplitude of 5.08 x 10-2m. At the point where the block has its maximum speed, it splits into two identical (equal-mass) blocks and only one of these remains attached to the spring. A. What is the amplitude and frequency of the simple harmonic motion of the piece that remains attached to the spring? B....

  • A block attached to a horizontal spring is pulled to the right a distance of 21.0...

    A block attached to a horizontal spring is pulled to the right a distance of 21.0 cm from the equilibrium position. The block is released and the block-spring system undergoes SHM at f- 1.29 Hz. Assuming that positive is to the right, determine at 0.500 s after release the block's displacement, velocity, and acceleration. Neglect friction. (Indicate the direction with the sign of your answer) (a) displacement cm (b) velocity cm/s (c) acceleration cm/s2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT