Question

5. (10 points) Air at a pressure of 2 bar, a temperature of 52°C and a mass flow rate of 0.45 kg/s enters an insulated duct h

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ti = 52°C Pi = 2 bar mass How rate m = 0.45 kgfs. da = 5cm V₂ = 225m/s. P2 = 10:325 k pg. m = /2A2V2. 0.45 = P₂ X 7 (0.05) 2(50 of entropy Please, determine the rate generation within the duct (As) = mcp ln 12 - MR in P22 ti = 0.45X1.005 In ( 346.43

Add a comment
Know the answer?
Add Answer to:
5. (10 points) Air at a pressure of 2 bar, a temperature of 52°C and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s...

    At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 300 m/s. Neglecting potential energy effects and modeling air as an ideal gas, determine a. the velocity of the air at the inlet, in m/s. b. the temperature of the...

  • Air enters a nozzle in a jet engine at a pressure of 500 kPa, temperature of...

    Air enters a nozzle in a jet engine at a pressure of 500 kPa, temperature of 650K, and velocity of 75 m/s. The air exits the nozzle at a pressure of 100 kPa, and the isentropic nozzle efficiency is 82%. a). Determine the velocity of the air at the nozzle exit. b). Determine the rate of entropy generation in the nozzle per kg of air flowing in kW/kgK

  • Water vapor enters a diffuser at a pressure of 0.7 bar, a temperature of 160°C, and...

    Water vapor enters a diffuser at a pressure of 0.7 bar, a temperature of 160°C, and a velocity of 180 m/s. The inlet to the diffuser is 100 cm The exit conditions from the diffuser are: velocity of 60 m/s and pressure of 1.0 bar. During the passage of the water vapor through the diffuser, there is heat transfer to the surroundings of 0.6 kJ/kg. Determine (a) the final temperature. (b) the mass flow rate in kg/s, and (c) the...

  • V-3. Air flows at steady state through a horizontal, well-insulated, constant-area duct whose diameter is 0.75...

    V-3. Air flows at steady state through a horizontal, well-insulated, constant-area duct whose diameter is 0.75 in. At the inlet, p1 = 55.9 lbf/in.2, T1 = 7200R, and the velocity is 9 ft/s. The temperature of the air leaving the duct is 700°R. Determine (a) the velocity at the exit, in ft/s. (b) the pressure at the exit, in lbf/in.2 (c) the magnitude of the net horizontal force exerted by the duct wall on the air, in lbf. In which...

  • Need help with Thermodynamics Homework. WILL RATE HIGH! Thank you! Please answer them all for high...

    Need help with Thermodynamics Homework. WILL RATE HIGH! Thank you! Please answer them all for high rate 1. Carbon Oxide (CO) initially occupying 2.9 m3 at 7.4 bar, 246.85°C undergoes an internally reversible expansion during which pV1.4 = constant to a final state where the temperature is 36.85°C. Assuming the ideal gas model, determine the entropy change, in Joules/K. 2. Water at 10 bar, 240°C enters a turbine operating at steady state and exits at 4 bar. Stray heat transfer...

  • 03 4: Air from the surrounding atmosphere at 100 kPa, 20 °C, enters a compressor with...

    03 4: Air from the surrounding atmosphere at 100 kPa, 20 °C, enters a compressor with a velocity of 8.6 m/s through an inlet whose diameter is 36 cm. The compressed air exits at 650 kPa, 225 °C, with a velocity of 2.8 m/s. The rate of entropy generation for the compressor is 0.062 kW/K Determine the power input to the compressor, kW.

  • Question 4 (16 Marks) A frictionless, adiabatic compressor compresses hydrogen at a pressure of 3 bar and a temperat...

    Question 4 (16 Marks) A frictionless, adiabatic compressor compresses hydrogen at a pressure of 3 bar and a temperature of 10 °C, to a pressure of 16 bar. The hydrogen enters the compressor at a velocity of 80 m/s and exits at negligible velocity. From the compressor, the hydrogen is passed at constant pressure through a duct and cooled to a temperature of 55 °C, in the process. The hydrogen mass flow rate is 0.5 kg/s, and all changes in...

  • 1. Airflow enters a duct at a total pressure of 250 kPa and a total temperature...

    1. Airflow enters a duct at a total pressure of 250 kPa and a total temperature of 350 K. The inlet static pressure, P, is 239.35 kPa. The flow exits a converging section at 2 where the area is 0.01 m2. Treat air as an ideal gas where k 14. Pback- 120kpa (a) Determine the Mach number at A2 (b) Determine the exit static pressure and temperature at 2. (c) Determine the mass flow rate. (d) Determine the inlet area...

  • 3_4: Air from the surrounding atmosphere at 100 kPa, 20 oC, enters a compressor with a...

    3_4: Air from the surrounding atmosphere at 100 kPa, 20 oC, enters a compressor with a velocity of 8.6 m/s through an inlet whose diameter is 36 cm. The compressed air exits at 650 kPa, 225 oC, with a velocity of 2.8 m/s. The rate of entropy generation for the compressor is 0.062 kW/K. Determine the power input to the compressor, kW.

  • Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 300...

    Problem 4.018 SI Air enters a horizontal, constant-diameter heating duct operating at steady state at 300 K, 1 bar, with a volumetric flow rate of 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.05 m2 Assuming the ideal gas model with k-1.4 for the air, determine: (a) the mass flow rate, in kg/s, (b) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer to the air, in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT