Question

1. A 00-Hz short transmission line, having R = 0.62 ohms per phase and L = 93.24 millinenrys per phase, supply a three-phase,

Please, i need a explication step by step of this

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Please, i need a explication step by step of this 1. A 00-Hz short transmission line,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A 60 km-long three-phase 60-Hz transmission line has per phase line inductance of 1.554 mH/km and...

    A 60 km-long three-phase 60-Hz transmission line has per phase line inductance of 1.554 mH/km and per phase line resistance of 10.33 mΩ/km. It supplies a three-phase Y connected 100 MW 0.9 lagging power factor load at 215 kV line-line voltage. Calculate the voltage regulation and efficiency of transmission.

  • A short 3-phase, 33-kV power transmission line delivers a load of 7-MW at a power factor...

    A short 3-phase, 33-kV power transmission line delivers a load of 7-MW at a power factor of 0.85 lagging and 33-kV. If the series impedance of the line is 20+j30 Ohms/phase, calculate The ABCD constants (parameters) The sending end voltage The load angle The voltage regulation The transmission efficiency

  • A 3-phase, 60-Hz transmission line consisting of one ACSR Bluejay conductor per phase has a spacing...

    A 3-phase, 60-Hz transmission line consisting of one ACSR Bluejay conductor per phase has a spacing of 9 m between conductors. The transmission line is 100 miles long and delivers 40 MW at 220 kV with a 0.9 pf lagging. Determine Voltage, current, and power factor at the sending end Voltage regulation and efficiency

  • power system A single-circuit 60-Hz high voltage power transmission line is 370 km (230 mi) long....

    power system A single-circuit 60-Hz high voltage power transmission line is 370 km (230 mi) long. The conductors are Rook with flat horizontal configuration and 7.25 ms=(23.8 ft.) conductor spacing. The load on the line is 125 MW at 100% power factor. Use attached Tables A3 to A3to determine; The sending end voltage Vs The sending end current Is The sending end power Ps The percentage voltage regulation The transmission efficiency Given that Ds for the Rook conductor is 0.0327...

  • A 3-phase, 50 Hz overhead transmission line has the following constants

    A 3-phase, 50 Hz overhead transmission line has the following constants : Resistance/phase = 9·6 Ω Inductance/phase = 0·097 mH Capacitance/phase = 0·765 μF If the line is supplying a balanced load of 24,000 kVA 0·8 p.f. lagging at 66 kV, calculate : (i) sending end current (ii) line value of sending end voltage (iii) sending end power factor (iv) percentage regulation (v) transmission efficiency

  • Show the solution for the following problem 1. A short, 230 kV transmission line has an...

    Show the solution for the following problem 1. A short, 230 kV transmission line has an impedance of 5 cis 78 ohms. The load at the receiving end is 100 MW at 230 kV, 85% lagging power factor. What is the voltage at the sending end? a. 235.43 kV b. 226.3 kV c. 231.78 kV d. 238.21 kV 2. A 66 kv medium length transmission line delivers a load of 10 MW at 66 kv and 80% lagging P.F. the...

  • #2. A 3-phase, 60-Hz transmission line is 140 miles long and has r :0.30 Ohms/mile, x...

    #2. A 3-phase, 60-Hz transmission line is 140 miles long and has r :0.30 Ohms/mile, x =1.5 Ohms/mile, and the shunt admittance is 7.8 x 100900 mho /mile. The load at the receiving end of the line is 36 MVA at 220 kV and a power factor of 0.90 lagging (i)Find the ABCD parameters of the line. (i)Find the sending end phasor voltage, Vs and phasor current, Is iv)What is the real power, P and the reactive power Q at...

  • #1, A 3-phase, 60-Hz transmission line is 50 km long and has r -o20 Ohms/km and...

    #1, A 3-phase, 60-Hz transmission line is 50 km long and has r -o20 Ohms/km and x-0.50 Ohms/km. The load at the receiving end of the line is 2.5 Mw at a power factor of 0.9 leading. (i)Compute the impedance of the line, Zline * at the lad tole, the lad wi e . (ii)Find the sending end current, I, as 33nv lhe to tine Van-eerene (ii) What is the sending end voltage, V,? (iv)What is the real power, P...

  • A 3-ph, 50 Hz overhead transmission line 100 km long delivers 20 MW at 0.9 p.f...

    A 3-ph, 50 Hz overhead transmission line 100 km long delivers 20 MW at 0.9 p.f lagging and at 110 kV. The resistance and reactance per phase per km are (0.2) Ω and (j0.4) Ω respectively, while capacitive admittance per phase per km is (j2.5 * 10-6) siemen. Using nominal T circuit, Find: 1- Constants A, B, C, and D. 2- Sending end voltage.        3- Sending end current 4- Sending end power factor    5- Voltage regulation of this T.L.    6-...

  • QUESTIONS 1- A 69-kV, three-phase transmission line is 20 km long. The line has a per...

    QUESTIONS 1- A 69-kV, three-phase transmission line is 20 km long. The line has a per phase series impedance of 0,120 + 10,4325 per km. Detemine the sending end voltage, voltage regulation, the sending end power, and the transmission efficiency when the line delivers (a) 60 MVA, 0.8 lagging power factor at 60 kV. (b) 110 MW, unity power factor at 60 kV

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT