Question

Water is released from a tank with a constant depth of 30 feet as shown in the figure. The entrance and exit loss coefficients are 0.3 and 0.5. The outfall pipe has a diameter meter of 5 ft and a length of 100 ft. The pipe wall is a rough concrete surface with a roughness height of 0.05 ft. Considering both minor and major losses this system, determine the flowrate in the pipe?

100 feet 15 ft e-0.05 ft D-5feet Kr=0.5 Kn=0.3 D-3ft ラ

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Calculation of Flow through the pipe can be calculated by using Bernoulli's equation which is based on conservation of Energy. i.e, total head remain constant.Ebeve- cia at frictィon Loss outer dia 2 12.56 at outle /12-S“ Losses ct envanLe Ho piPe 2x32-17う05 Losses at exit o pipe ニ 1.55X10-40- 2 Mean velo iM 12 546 7., 063) 、 。*, f= 0.0379

Add a comment
Know the answer?
Add Answer to:
Water is released from a tank with a constant depth of 30 feet as shown in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q3 (40 pts): Water is pumped through a 60-m-long, 0.3-m-diameter pipe from a lower reservoir to...

    Q3 (40 pts): Water is pumped through a 60-m-long, 0.3-m-diameter pipe from a lower reservoir to a higher reservoir, which has a water surface 10 m above the lower one. When the pump adds 40 kW to the water the flowrate is 0.20 m/s. Assume the following coefficients of minor losses: • Entrance: Kentrance = 0.5 Exit: Kexit = 1 Each elbow: Kelbow = 1.5 • Valve: K= 6 Part A (20 pts) Determine the pipe roughness ε. Part B...

  • Two large tanks are open to the atmosphere at the top. Water s pumped from the lower tank to the upper tank through a si...

    Two large tanks are open to the atmosphere at the top. Water s pumped from the lower tank to the upper tank through a single PVC (smooth) pipe. The relationship between Velocity in the pipe (ft/s) and the pump head (ft) is given. There are no significant minor losses. What is the flow rate, Q (cfs), in the pipe? Pump Coefficients 1.30 sec /ft Pipe Length Inside Pipe Diameter 300 ft 0.250 feet a = 3.24 sec b 107.00 ft...

  • Question 3: Water is to be pumped from one large, open tank to a second large,...

    Question 3: Water is to be pumped from one large, open tank to a second large, open tank. The water surface of the first tank is 5 ft lower than the water surface of the second tank. The pipe diameter throughout is 4in. The total length of pipe is 300ft. The friction coefficient is 0.02. The pump with the performance curve given in the figure is suggested by the engineer. With this pump, what would be the flow rate between...

  • please solve it step by step with details thank you!!!!! Water is to be pumped from...

    please solve it step by step with details thank you!!!!! Water is to be pumped from one large, open tank to a second large open tank as shown in Figure 1. The pipe diameter throughout is 15 cm and the total length of the pipe between the pipe entrance and exit is 60 m. Minor loss coefficient for the entrance, exit and the elbow are shown, and the Darcy friction factor for the pipe can be assumed constant and equal...

  • A pump transmits water at 10 °C from the reservoir to an elevated tank L2= 150...

    A pump transmits water at 10 °C from the reservoir to an elevated tank L2= 150 m as shown. The loss coefficient in Elevation = 190 m Elevation = 185 m each bend is 0.4 and loss in the pipe Water entrance is Ke = 0.5. There are no L=100 m loss at the pipe exit at the elevated Elevation D -20 cm tank. The pipelines are made of steel. -150 m -- Elevation - 145 m State your assumptions...

  • A centrifugal pump is used to pump water at 77ºF from a reservoir whose surface is 20 ft above th...

    A centrifugal pump is used to pump water at 77ºF from a reservoir whose surface is 20 ft above the centerline of the pump inlet. The Pipe System consists of 67.5 ft of PVC pipe with a 1.2 in ID and negligible average internal roughness height. The length of the pipe from the bottom of the lower tank to the pump inlet is 12 ft. There are several minor losses in the pipe: an acute edge entry (KL = 0.5),...

  • Water at 50 °Fis circulated from a large tank, through a filter, and back to the...

    Water at 50 °Fis circulated from a large tank, through a filter, and back to the tank Calculate the volumetric flow rate through the filter for the following given information: Patm V.. Valve Pump Filter Pump power: W=200 lbf.ft/s Pump efficiency: 1p-0.9 Total pipe length: /= 200 ft Pipe diameter: d=0.1 ft Pipe surface relative roughness: /d=0.01 Elbow loss factor (each): Kelbow=1.5 Valve loss factor: Kvalve-6 Inlet and Exit type: sudden, Fig. 6.22 Filter loss factor Kriter=12 F (velocity, ft/s...

  • A pump transports water from Tank 1 to Tank 2 through a constant-diameter piping system as...

    A pump transports water from Tank 1 to Tank 2 through a constant-diameter piping system as shown below (not to scale). The flow rate is controlled by two gate valves, the gate valve I controls the main pipeline, while the gate valve II controls the loop line from T-joint A to T-joint B. All pipes are galvanized steel pipe of diameter D = 4 in. It has a total length of Li2= 620 ft from tank 1 to tank 2....

  • Consider the Ballard Locks as shown below. When traveling from the lake to the bay, there...

    Consider the Ballard Locks as shown below. When traveling from the lake to the bay, there is a difference in height of an average of 21 feet. The high side is the fresh water side. The locks allow boats traveling from fresh water to be lowered gently in an enclosed ‘lock’ down to the level of the salt water in the bay. A boat enters the locks through double entry gates on the fresh water (right) side. The entry gates...

  • Problem 3 A pipeline delivers water from Reservoir 1 to Reservoir 2 as shown in the following figure. The water levels at Reservoirs 1 and 2 are 50 ft and 20 ft, respectively. A globe valve is in...

    Problem 3 A pipeline delivers water from Reservoir 1 to Reservoir 2 as shown in the following figure. The water levels at Reservoirs 1 and 2 are 50 ft and 20 ft, respectively. A globe valve is installed in the pipeline with a minor head loss coefficient k 10. The pipe from Reservoir 1 to the globe valve is 1000 ft long and 6 inches in diameter. The pipe from the globe valve to Reservoir 2 is also 1000 ft...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT