Question

The potential at the surface of a sphere is given by Vo(0)-kcos 30 Find the potential inside and outside the sphere, as well as the surface charge density ?(0) on the sphere. (Assume there is no other charge in the problem except on the sphere.) Make sure to evaluate the coefficients using Fouriers trick, rather than just guessing. Make a sketch of the electric field.
media%2Fb89%2Fb89d0cfc-486b-45be-abfd-59
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Gnum Trat, Ts potent ial a e Surpaca of a Sphee * Kk Constant Sance C ols 1:0 avar-ayn-.-6 3k@θ chonge denšiy

Add a comment
Know the answer?
Add Answer to:
The potential at the surface of a sphere is given by Vo(0)-kcos 30 Find the potential...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The potential at the surface of a sphere is given by V = kcos(theta) where k...

    The potential at the surface of a sphere is given by V = kcos(theta) where k is a constant. A) find the potential inside and outside the sphere (no charge present inside or outside the sphere) B) Determine the charge density sigma on the surface of the sphere.

  • 5. A hollow sphere of radius R has a potential on the surface of V(θ, d)...

    5. A hollow sphere of radius R has a potential on the surface of V(θ, d) Vo cos θ. There is no a) Find the potential everywhere inside and outside the sphere. b) Find the electric field everywhere inside the sphere. (You will find it easier to convert the potential to Cartesian coordinates and then find the field.) c) Find the charge density σ(0) on the surface of the sphere using Gauss' law. charge inside or outside the sphere.

  • 1. The potential at the surface of a sphere is kept at potential V(R.0)-Vo sin20. The...

    1. The potential at the surface of a sphere is kept at potential V(R.0)-Vo sin20. The potential at infinity is zero. (a) Find V(r, 0) inside the sphere. (b) Find V(r,0) outside the sphere. (c) Find σ(θ), the charge density on the sphere. (d) Find the total charge of the sphere. (e) The problern would be a lot harder if the potential were specified to be V(R,θ)-Võsin θ Why? Explain how you would do part (a) without going through the...

  • (16 pts total) The potential at the surface of a sphere of radius R is given...

    (16 pts total) The potential at the surface of a sphere of radius R is given by Vo k(35cos 0-30cos +5cos+3) where k is a constant. Assume there is no charge inside or outside the sphere. 2. a. (5 pts) Write Vo in terms of Legendre polynomials b. (6 pts) Determine the boundary conditions and find the potential inside and outside the sphere. (5 pts) Find the surface charge density σ(θ) at the surface of the sphere. C.

  • 2. (30 POINTS) A spherical shell of radius R holds a potential on its surface of:...

    2. (30 POINTS) A spherical shell of radius R holds a potential on its surface of: V(R, 0) = V.(1 + 2cose - cos20) (a.) Find the potential inside and outside the sphere. (b.) Find the surface charge density on the sphere. (c.) Find the dipole moment and the dipole term of the electric field, Epip.

  • A hollow, conducting sphere with an outer radius of 0.240 m and an inner radius of 0.200 m has a uniform surface charge density of +6.37 x 10-6 C/m²

    Exercise 22.19 A hollow, conducting sphere with an outer radius of 0.240 m and an inner radius of 0.200 m has a uniform surface charge density of +6.37 x 10-6 C/m². A charge of -0.500 μC is now introduced into the cavity inside the sphere. Part A What is the new charge density on the outside of the sphere?Part B Calculate the strength of the electric field just outside the sphere. Part CWhat is the electric flux through a spherical surface just inside the inner...

  • 2. Potentials and a Conducting Surface The electric potential outside of a solid spherical conductor of...

    2. Potentials and a Conducting Surface The electric potential outside of a solid spherical conductor of radius R is found to be V(r, 9) = -E, cose (--) where E, is a constant and r and 0 are the spherical radial and polar angle coordinates, respectively. This electric potential is due to the charges on the conductor and charges outside of the conductor 1. Find an expression for the electric field inside the spherical conductor. 2. Find an expression for...

  • A conducting sphere of radius a, at potential Vo, is surrounded by a thin concentric spherical...

    A conducting sphere of radius a, at potential Vo, is surrounded by a thin concentric spherical shell of radius b, over which someone has glued a surface charge density σ(8)-k cos θ, where k is a constant and θ is the polar spherical coordinate. (a) Find the potential in each region: (i)r > b, and () a<r<b. [5 points] [Hint: start from the general solution of Laplace's equation in spherical coordinates, but allow for different coefficients in the radial part...

  • A hollow, conducting sphere with an outer radius of 0.254 mm and an inner radius of...

    A hollow, conducting sphere with an outer radius of 0.254 mm and an inner radius of 0.207 mm has a uniform surface charge density of +6.38×10−6 C/m2C/m2 . A charge of -0.640 μCμC is now introduced into the cavity inside the sphere. a)What is the new charge density on the outside of the sphere? b)Calculate the strength of the electric field just outside the sphere. c)What is the electric flux through a spherical surface just inside the inner surface of...

  • Problem 2: a conducting sphere A conducting sphere has a positive net charge Q and radius...

    Problem 2: a conducting sphere A conducting sphere has a positive net charge Q and radius R. (Note: since the sphere is conducting all the charge is distributed on its surface.) a) By reflecting on the symmetry of the charge distribution of the system, determine what the E-field lines look like outside the sphere for any r > R. Describe the E-field in words and with a simple sketch. Make sure to also show the direction of the E-field lines....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT