Question

5. Did you notice that during the action potential the neuron membrane potential reaches -90mV and stops? How/why does it stop at -90mV? Why doesnt it get more negative than -90mV? Hint: When the voltage-gated K+ channels are open on a neuron, there are so many voltage- gated K+ channels open that in reality you can think of the cell as being only permeable to K+. Its the main ion moving. Based on this and what we talked about on Wednesday (Nernst equation, electrochemical gradient, etc.), answer the question. 2 sentences and 30 words max. Short and sweet.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

The condition is known as hyperpolarization which happens because the equilibrium state of potassium makes the -90 once it comes around that -90 the net movement of potassium becomes 0 thus it will not more hyperpolarize than -90.

Add a comment
Know the answer?
Add Answer to:
5. Did you notice that during the action potential the neuron membrane potential reaches -90mV and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Neuron during an action potential: a. What triggers the first action potential (which ion)? b....

    2. Neuron during an action potential: a. What triggers the first action potential (which ion)? b. What is the typical threshold potential of a neuron? c. The calculated equilibrium potential of Na+ (EN) is approx. +60mV (calculated). Explain how this is related to the rising phase of an action potential (depolarization). d. The calculated equilibrium potential of K+ (EK) is approx. -90mV. Explain how this is related to the falling phase (repolarization). e. Direction of Nation movement (influx/efflux). f. Direction...

  • The fixed pattern of changes in membrane potential during an action potential is coordinated by the...

    The fixed pattern of changes in membrane potential during an action potential is coordinated by the sequential opening and closing of voltage-gated ion channels. Can you identify the status (open/closed) of the voltage-gated Na+ and K+ channels during each phase of an action potential? Drag the appropriate labels onto the graph to indicate the status (open or closed) of the voltage-gated Na+ and K+ channels during each phase of an action potential. Labels may be used once, more than once,...

  • 3. Many neurons contain "delayed K channels". Like voltage-gated Nat channels, these voltage-gated K+ channels open in response to a rise in membrane potential and then undergo inactivati...

    3. Many neurons contain "delayed K channels". Like voltage-gated Nat channels, these voltage-gated K+ channels open in response to a rise in membrane potential and then undergo inactivation. However, opening of the voltage-gated K channels lags behind opening of the voltage-gated Na channels. a) Why does neuronal function require the voltage-gated K channels to open more slowly than the voltage-gated Na channels? b) Compared to a neuron that lacks voltage-gated K channels, what differences would you expect in the shape...

  • The peak of an action potential reaches +30 mV. This is because a. all of the...

    The peak of an action potential reaches +30 mV. This is because a. all of the available Na+ voltage activation gates are open b. all of the K+ voltage-gated channels open c. of the absolute refractory period d. of the decreased Na+ concentration gradient e. all of the available Na+ voltage inactivation gates are closed

  • During the propagation of an action potential, what would be the effect of a mutation in...

    During the propagation of an action potential, what would be the effect of a mutation in the voltage-gated Na+-channels that does not allow “inactivation” phase to occur, such that these channels go directly from open to closed conformations? a) The neuron with the mutant Na+ channels will start letting in calcium ions and generate a calcium-based action potential that is stronger than the sodium-based action potential. b) The neuron with the mutant Na+ channel will exhibit a reverse electrochemical gradient...

  • During an action potential, which of the following actions does not help return the membrane to...

    During an action potential, which of the following actions does not help return the membrane to its resting potential? Choose one: O A. the inactivation of voltage-gated Nat channels O B. the opening of voltage-gated K+ channels O C. the opening of voltage-gated Nat channels O D. the flow of K+ through K+ leak channels

  • This time you get into a snail brain neuron that is completely quiet. The cell doesn't...

    This time you get into a snail brain neuron that is completely quiet. The cell doesn't even begin to fire action potentials when you inject depolarizing current, so you question yourself if you are actually in a neuron. Nevertheless, you briefly hyperpolarize thecell, and right after the hyperpolarization stops, the cell fires a few action potentials that have a quite large amplitude and then the cell becomes quite again. What could be going on here? Your traces kind of look...

  • QUESTION 8 he membrane potential becomes more negative than the resting potential during the after-hyperpolarization phase...

    QUESTION 8 he membrane potential becomes more negative than the resting potential during the after-hyperpolarization phase of the action potential (AHP) because Ligand-galed Nat channels are inactivated and cannot be opened Voltage-gated K channels become inactivated The K equilibrium potential is below the resting membrane potential All ofthe above. None of the above QUESTION 9 When an action potential reaches the axon terminal, release of neurotransmitter is triggered by... a. movement of sodium ions into the axon terminal b. movement...

  • Lo 10: Electrochemical Gradient The difference in voltage across the membrane is called the __________________________________. The...

    Lo 10: Electrochemical Gradient The difference in voltage across the membrane is called the __________________________________. The inside of a normal  cell is ___________________ (+/-); while the outside is ___________(+/-). The resting membrane potential of a neuron is  ___________mV. Diagram the relative ratios of Ca++, Na+ and K+ in a cell under resting conditions. Draw an arrow for each of the molecules indicating which direction would be passive transport (into or out of the cell). For each of the following sentences, fill in...

  • In its resting state, the membrane surrounding a neuron is permeable to potassium ions but only...

    In its resting state, the membrane surrounding a neuron is permeable to potassium ions but only slightly permeable to sodium ions. Thus, positive K ions can flow through the membrane in an attempt to equalize K concentration, but Na ions cannot as quickly. This leads to an excess of Na ions outside of the cell. If the space outside the cell is defined as zero electric potential, then the electric potential of the interior of the cell is negative. This...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT