Question

Block A of mass 10 kg sits on top of Block B of mass 15 kg....

  1. Block A of mass 10 kg sits on top of Block B of mass 15 kg. Block B is being tugged by a force F and Block A is being tugged by a force FA . FA makes an angle ? = 10degrees with the horizontal and is a 7N force. The coefficient of static friction between the two blocks is .01while the coefficient of kinetic friction between the floor and Block B is given as .5(see diagram below). Force F is such that, if it were any larger, the top block would slide off the back of the lower block.

  1. On the work page for this problem, make a NEATLY-drawn (with a straight-edge) Free Body Diagram for Block A including, with labels and where necessary, any of the following forces:

F

The Pulling force on B

Fa

The pulling force on A

Ma G and/or Mb G

The weight of the blocks

Intergral sign Static a,b

The static force of friction between the blocks

intergral sign Kinetic b, floor

The kinetic force of friction between Block B and the floor

F N a,b

The normal force between the blocks

F N b, floor

The normal force between Block b and the floor

  1. On the work page for this problem, make a NEATLY-drawn (with a straight-edge) Free Body Diagram for Block B including, with labels and where necessary, any of the forces listed above:

  1. Below you will find the Newton
0 0
Add a comment Improve this question Transcribed image text
Answer #2

can u also put the diagram related to question as it is important to know the direction of forces

Add a comment
Know the answer?
Add Answer to:
Block A of mass 10 kg sits on top of Block B of mass 15 kg....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 4 kg block is stacked on top of an 8 kg block. The blocks are...

    A 4 kg block is stacked on top of an 8 kg block. The blocks are pulled horizontally by a rope attached to the bottom block. The force of the pull is 50 N and the coefficient of kinetic friction between the bottom block and the floor is 0.3. What is the acceleration of the two blocks? What is the minimum static friction coefficient necessary to keep the top block stacked to the bottom block?

  • A 2-kg block is placed on the top of a 5-kg block . . . .

    A 2-kg block is placed on the top of a 5-kg block The coefficientof kinetic friction between the 5-kg block and the surface isμk =0.2. A horizontal force F is appliedto the 5-kgblock.a) Draw a free-body diagram for each block. What force acceleratesthe 2-kg block?b) Calculate the magnitude of the force necessary to pull bothblocks to the right withacceleration 3 m/s2.c) Find the minimum coefficient of static friction μs betweenthe blocks suchthat the 2-kg block does not slip under an...

  • A block of mass “m” sits on a (bigger) block of mass “4m” that is on...

    A block of mass “m” sits on a (bigger) block of mass “4m” that is on a frictionless table. The coefficients of friction between the two blocks are μs (static) and μk (kinetic). Assume that a horizontal force “F” is applied to the block on top (i.e. the smaller block with mass “m”). The force “F” is variable. The figure below is representative of this scenario. (You may use m = 10 kg, μs = 0.8, μk = 0.6, and...

  • 2a. Block A of mass "2m" sits on top of block B of mass "m". There...

    2a. Block A of mass "2m" sits on top of block B of mass "m". There is no friction between block B and the floor, but there is friction between the two blocks. Block B is pulled by a force "F" to the left. Write out the force equations on each block for the case of no slipping between the blocks. Don't solve FA - EFA- EFR = EF= 2b. The pulley (disk) shown has a mass "m" and radius...

  • A block of mass m1 sits on top of a larger block of mass2 which sits on a flat surface. The coefficient of kinetic frict...

    A block of mass m1 sits on top of a larger block of mass2 which sits on a flat surface. The coefficient of kinetic friction between the upper and the lower blocks is u1, and that between the lower block and the flat surface is u2. A horizontal force F pushes against the upper block, causing it to slide; the friciton force between the blocks then cause the lower block to slide also. Find the acceleration of the upper block...

  • . C. #1 : A block of mass M4 is positioned on top of another block...

    . C. #1 : A block of mass M4 is positioned on top of another block of mass Mg that is moving towards the right. There is no friction bctween the lower block and the table but there is friction between the two blocks, with a coefficient of kinetic friction Au. The upper block is tied to the wall with a taut, ideal string that prevents it from moving along with MB. Another ideal string attached to the lower block...

  • 2. A 3.80-kg hanging block is pulling against a 2.50-kg block on a tabletop, as shown,...

    2. A 3.80-kg hanging block is pulling against a 2.50-kg block on a tabletop, as shown, via a string over a pulley that is massless and frictionless. At the same time, a constant external force F = 5.50 N is pulling the tabletop block to the right, as shown. There is a static friction coefficient is = 0.75, and kinetic friction coefficient dx = 0.15, with the tabletop. (a) The blocks are initially stationary. With a calculation, determine whether the...

  • A block M1 of mass 16.0 kgsits on top of a larger block M2 of mass...

    A block M1 of mass 16.0 kgsits on top of a larger block M2 of mass 26.0 kg which sits on a flat surface. The kinetic friction coefficient between the upper and lower block is 0.400. The kinetic friction coefficient between the lower block and the flat surface is 0.100. A horizontal force F = 98 N pushes against the upper block, causing it to slide. The friction force between the blocks then causes the lower block to slide also....

  • A 10kg block is placed on top of a 35 kg block. 350N is applied to...

    A 10kg block is placed on top of a 35 kg block. 350N is applied to the right of the lower block,and the upper block slips on the lower block. the coeffient of kinetic friction between upper and lower blocks is .2, and the coefficient for the kinetic friction between lower block and the floor is .7. what is the accleration of the lower block

  • 1. A block of mass m = 5.0 kg is pulled along a horizontal floor or...

    1. A block of mass m = 5.0 kg is pulled along a horizontal floor or up the ramp by a force of magnitude F = 50 N. The coefficient of kinetic friction between the block and surface is 0.15 and the magnitude of the angle θ = 25.0°. (a) Make a free-body diagram of the block for each case. (b) Calculate the magnitude of the normal force and kinetic friction force for each case. (c) Calculate the acceleration of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT