Question

2. A 3.80-kg hanging block is pulling against a 2.50-kg block on a tabletop, as shown, via a string over a pulley that is mas
0 0
Add a comment Improve this question Transcribed image text
Answer #1

- > fnctions to 8.89 a to heu Block is stationes T= fxtro 3.8 X9,8 757.24 helorfoto T- 3 bas 87.24 = 5.50+ to f = 31.74 - max

Add a comment
Know the answer?
Add Answer to:
2. A 3.80-kg hanging block is pulling against a 2.50-kg block on a tabletop, as shown,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • show all the work please 2. A 3.80-kg hanging block is pulling against a 2.50-kg block...

    show all the work please 2. A 3.80-kg hanging block is pulling against a 2.50-kg block on a tabletop, as shown, via a string over a pulley that is massless and frictionless. At the same time, a constant external force F = 5.50 N is pulling the tabletop block to the right, as shown. There is a static friction coefficient is = 0.75, and kinetic friction coefficient dx = 0.15, with the tabletop (a) The blocks are initially stationary. With...

  • A 3.50-kg block on a smooth tabletop is attached by a string to a hanging block...

    A 3.50-kg block on a smooth tabletop is attached by a string to a hanging block of mass 2.80 kg, as shown in the figure. The blocks are released from rest and allowed to move freely Part A Is the tension in the string greater than, less than, or equal to the weight of the hanging mass? Part B Find the acceleration of the blocks. Part C Find the tension in the string.

  • A m1 = 4.00 kg block on a smooth tabletop is attached by a string to...

    A m1 = 4.00 kg block on a smooth tabletop is attached by a string to a hanging block of mass m2 = 2.90 kg, as shown in the figure. The blocks are released from rest and allowed to move freely. Find the tension in the string.

  • A block of mass m = 2.50 kg is hanging from a massless cord that is...

    A block of mass m = 2.50 kg is hanging from a massless cord that is wrapped around a pulley (mass = 4.50 kg) as shown in the figure. The cord does not slip relative to the pulley as the block falls. Find the magnitude of the acceleration of the hanging mass. (moment of inertia of the pulley = ½Mr²)

  • A block of mass m1 = 39 kg on a horizontalsurface is connected to a...

    A block of mass m1 = 39 kg on a horizontal surface is connected to a mass m2 = 22.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction betweenm1 and the horizontal surface is 0.23.A) What is the magnitude of the acceleration (in m/s2) of the hanging mass?B) Determine the magnitude of the tension (in N) in...

  • Block A in the figure has mass mA = 4.20 kg, and block B has mass...

    Block A in the figure has mass mA = 4.20 kg, and block B has mass mB = 2.40 kg. The coefficient of kinetic friction between block B and the horizontal plane is μk = 0.520. The inclined plane is frictionless and at angle θ = 34.0°. The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration...

  • A 9.00 kg hanging weight is connected by a string over a pulley to a 5.00 kg block that is sliding on a flat table

    A 9.00 kg hanging weight is connected by a string over a pulley to a 5.00 kg block that is sliding on a flat table (Fig. P5.24). If the coefficient of kinetic friction is 0.183, find the tension in the string.

  • A 8.90-kg hanging object is connected by a light, inextensible cord over a light

    A 8.90-kg hanging object is connected by a light, inextensible cord over a light, frictionless pulley to a 5.00-kg block that is sliding on a flat table. Taking the coefficient of kinetic friction as 0.150, find the tension in the string. (The block slides to the right in the diagram below.) 

  • Consider the system shown below. Block A (mass 8 kg) is connected to block B (mass 2 kg) by a horizontal string that pas...

    Consider the system shown below. Block A (mass 8 kg) is connected to block B (mass 2 kg) by a horizontal string that passes over a massless, frictionless pulley. a. Draw and label all forces acting on blocks A and B. b. Draw a free–body diagram for each block c. Determine the acceleration of the system d. Determine the tension on the string . A A

  • In the system shown below, there is a block of mass M = 3.6 kg resting...

    In the system shown below, there is a block of mass M = 3.6 kg resting on a horizontal ledge. The coefficient of kinetic friction between the ledge and the block is 0.25. The block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging block of mass m = 2.2 kg. The pulley is a uniform disk of radius 7.9 cm and mass 0.66 kg. Find the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT