Question

In the system shown below, there is a block of mass M = 3.6 kg resting...

In the system shown below, there is a block of mass M = 3.6 kg resting on a horizontal ledge. The coefficient of kinetic friction between the ledge and the block is 0.25. The block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging block of mass m = 2.2 kg. The pulley is a uniform disk of radius 7.9 cm and mass 0.66 kg. Find the acceleration of each block and the tensions in the segments of string between each block and the pulley. and the horizomtal and vertical tensions

horizontal tension?

.vertical tension?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
In the system shown below, there is a block of mass M = 3.6 kg resting...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The system shown in the figure below consists of a mass M = 3.3-kg block resting...

    The system shown in the figure below consists of a mass M = 3.3-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m = 1.7-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. (a) What is the acceleration of each block? acceleration of M = 3.3 kg _____ m/s2 acceleration...

  • Investigation 1 - Connected Particles (Maximum Mark 45) A block mass M kg is resting on...

    Investigation 1 - Connected Particles (Maximum Mark 45) A block mass M kg is resting on the horizontal top of a cube. The coefficient of friction between the block and the cube is u. Two strings are attached to the sides of the block. One string passes over a pulley and is attached to an object of mass m kg which is hanging freely a height h metres above the ground. The other string passes over another pulley on the...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • The system shown below is released from rest. The m_b = 26 kg block is 2...

    The system shown below is released from rest. The m_b = 26 kg block is 2 m above the ledge. The pulley is a uniform disk with a radius of 10 cm and mass m = 6.0 kg. Assume that the string does not slip on the pulley. (a) Find the speed of the 26 kg block just before it hits the ledge. (b) Find the angular speed of the pulley at that time. (c) Find the tensions in the...

  • A block A with a mass of 3 kg rests on a horizontal table top. The...

    A block A with a mass of 3 kg rests on a horizontal table top. The coefficient of kinetic friction, μk = 0.5. A horizontal string is attached to A and passes over a massless, frictionless pulley, and block B with mass 2 kg hangs from it. Because of the pull of gravity, the masses accelerate. What is the Tension in the string (in Newtons)?

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with ma...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m1 = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.40 m/s2, and the tension in the segment of string attached to this block is T1. The hanging block has a mass of  m2 = 23.5 kg, and the tension in the string attached to it is T2....

  • A block of mass m_1 = 1.5 kg is placed on a horizontal surface. Attached to...

    A block of mass m_1 = 1.5 kg is placed on a horizontal surface. Attached to the block is a string which passes over a pulley and suspends a mass m_2 = 3.5 kg as shown in the diagram below. If the system accelerates at a = 5.2 m/s^2, what is the coefficient of kinetic friction mu_k between the horizontal surface and m_1?

  • A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are...

    A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. These blocks are allowed to move on a fixed block-wedge of angle e 30.0°. The coefficient of kinetic friction is 0.360 for both blocks. Draw free-body diagrams of both blocks and of the pulley. M, R Mig...

  • A block of mass m1 = 1.95 kg and a block of mass m2 = 5.50...

    A block of mass m1 = 1.95 kg and a block of mass m2 = 5.50 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. A wedge in the shape of a right trapezoid...

  • A 10 kg box resting on a horizontal, frictionless surface is attached to a 4 kg...

    A 10 kg box resting on a horizontal, frictionless surface is attached to a 4 kg block by a thin light rope that passes over a frictionless pulley. The pulley has a shape of a uniform solid disk of mass 4.5 kg and a radius of 0.55 m. After the system is released 10 kg box moves to the right, 4 kg block moves down and the pulley rotates clockwise. 7 Find: (a) the magnitude of the tension (in N)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT