Question

A block of mass m_1 = 1.5 kg is placed on a horizo

0 0
Add a comment Improve this question Transcribed image text
Answer #1

equate the forces

m2g - T = (m1+m2)a ----------

3.5* 9.81 - T = 4*5.2

T = 13.535

now,

T - mu*m1g = m1*a ---------1

(13.535 - 1.5*5.2)5.2*9.8 = mu

mu = 0.112

Add a comment
Know the answer?
Add Answer to:
A block of mass m_1 = 1.5 kg is placed on a horizontal surface. Attached to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m_1 = 3 kg is on a table and attached to a...

    A block of mass m_1 = 3 kg is on a table and attached to a block of mass m_2 = 4 kg by a massless string. The coefficient of friction is 0.28 between the table and m_1. The system is released from rest. After m_2 falls 1.5 m, what is the speed of m_2?

  • In the figure below, the hanging object has a mass of m_1 = 0.400 kg; the...

    In the figure below, the hanging object has a mass of m_1 = 0.400 kg; the sliding block has a mass of m_2 = 0.770 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R_1 = 0.020 0 m, and an cuter radius of R_3 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...

  • An experiment is done on a horizontal surface. A block of mass m_1 is initially held...

    An experiment is done on a horizontal surface. A block of mass m_1 is initially held in place compressing a spring with spring constant k by a distance x_0. The other end of the spring is firmly attached to the wall and does not move. What is the final speed of m_1 after it is released and loses contact with the spring? After it reaches its final speed, m_1 collides and sticks to a second block of mass m_2. What...

  • A pulley system is attached securely to the corner of a ceiling and connects to masses...

    A pulley system is attached securely to the corner of a ceiling and connects to masses M_1 and M_2 as shown. Atop M_2 sits another mass, M_3. Mass M_1 rests on a 60 degree incline, while masses M_2 and M_3 are on a 25 degree incline. The coefficient of kinetic friction between the masses and the inclines is mu_k = 0.25, while the coefficient of static friction between M_2 and M_3 is mu_s = 0.70. If M_2 = 1.20 kg...

  • A mass m_1 = 9.00 kg is connected by a light string that passes over a...

    A mass m_1 = 9.00 kg is connected by a light string that passes over a pulley of mass M = 13.5 kg to a mass m_2 = 12.0 kg sliding on a horizontal frictionless surface (sec figure). There is no slippage between the string and the pulley. What is the magnitude of the tension that is acting on mass m_1? (The moment of inertia of the pulley is 1/2Mr^2.)

  • In the system shown below, there is a block of mass M = 3.6 kg resting...

    In the system shown below, there is a block of mass M = 3.6 kg resting on a horizontal ledge. The coefficient of kinetic friction between the ledge and the block is 0.25. The block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging block of mass m = 2.2 kg. The pulley is a uniform disk of radius 7.9 cm and mass 0.66 kg. Find the...

  • A block A with a mass of 3 kg rests on a horizontal table top. The...

    A block A with a mass of 3 kg rests on a horizontal table top. The coefficient of kinetic friction, μk = 0.5. A horizontal string is attached to A and passes over a massless, frictionless pulley, and block B with mass 2 kg hangs from it. Because of the pull of gravity, the masses accelerate. What is the Tension in the string (in Newtons)?

  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

  • Mass M_2 starts from rest and falls a height H. Mass M_1 is attached by a...

    Mass M_2 starts from rest and falls a height H. Mass M_1 is attached by a rope to mass M_2. The rope goes over a massless and frictionless pulley. Assume the rope is massless and does not stretch. The coefficient of kinetic friction mu k exist between M_1 and the table. Determine the acceleration of M_1 after M_2 is released Determine the time it takes M_2 to fall to the ground. Determine the velocity of M_1 as M_2 hits the...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT