Question

An experiment is done on a horizontal surface. A b

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

using conservation of energy

kinetic energy = spring potential energy

(0.5) m v2 = (0.5) k xo2

m1 v2 = k xo2

v = xo sqrt(k/m1)

b)

since the blocks sticks together after the collision , hence the collision is inelastic collision

using conservation of momentum

m1 v1i + m2 v2i = (m1 + m2) V

m1 xo sqrt(k/m1) + m2 (0) = (m1 + m2) V

V = xo sqrt(km1) /(m1 + m2)

c)

d = stopping distance

a = acceleration = - \muk g

Vf = final velocity = 0 m/s

Vi = initial velocity = xo sqrt(km1) /(m1 + m2)

using the equation

Vf2 = Vi2 + 2 a d

02 = x2o (km1)2 /(m1 + m2)2 + 2 (- \muk g) d

\muk = x2o (km1)2 /(m1 + m2)2 /(2gd)

Add a comment
Know the answer?
Add Answer to:
An experiment is done on a horizontal surface. A block of mass m_1 is initially held...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m_1 = 1.80 kg moving at v_1 = 2.00 m/s undergoes a...

    A block of mass m_1 = 1.80 kg moving at v_1 = 2.00 m/s undergoes a completely inelastic collision with a stationary block of mass m_2 = 0.300 kg. The blocks then move, stuck together, at speed v_2. After a short time, the two-block system collides inelastically with a third block, of mass m_3 = 2.20 kg, which is initially at rest. The three blocks then move, stuck together, with speed v_3. (Figure 1) Assume that the blocks slide without...

  • A block of mass m_1 = 1.5 kg is placed on a horizontal surface. Attached to...

    A block of mass m_1 = 1.5 kg is placed on a horizontal surface. Attached to the block is a string which passes over a pulley and suspends a mass m_2 = 3.5 kg as shown in the diagram below. If the system accelerates at a = 5.2 m/s^2, what is the coefficient of kinetic friction mu_k between the horizontal surface and m_1?

  • A block of mass m_1 = 3 kg is on a table and attached to a...

    A block of mass m_1 = 3 kg is on a table and attached to a block of mass m_2 = 4 kg by a massless string. The coefficient of friction is 0.28 between the table and m_1. The system is released from rest. After m_2 falls 1.5 m, what is the speed of m_2?

  • Block A of mass mA is moving horizontally with speed Va along a frictionless surface

     Block A of mass mA is moving horizontally with speed Va along a frictionless surface. It collides elastically with block B of mass mB that is initially at rest. After the collision block B enters a rough surface at x =0 with a coefficient of kinetic friction that increases linearly with distance μ(x) = bx for 0 ≤ x ≤ d, where b is a positive constant. At x=d block B collides with an unstretched spring with spring constant k...

  • Block B of mass 10.0 kg is placed in contact with an unstretched spring on a...

    Block B of mass 10.0 kg is placed in contact with an unstretched spring on a horizontal, frictionless surface. The other end of the spring is attached to a fixed support. Block A with a mass of 4.00 kg is moving with a speed of 20.0 m/s when it collides with and sticks to B. (a) What is the speed of the combined blocks after the collision? The blocks compress the spring 2.60 m before coming to rest momentarily. (b)...

  • 1 3. A block of mass m 1.9 kg is held against a spring of spring...

    1 3. A block of mass m 1.9 kg is held against a spring of spring constant k 410 and compressed 0.75 m. When released, it is pushed along the frictionless surface towards mi rebounds mass m 4.3 kg. The two masses collide and mass towards the spring at a speed of 2.1 m/s, while mass m slides back towards the spring at a sp a. What is the speed of mass mi right before the collision? b. What is...

  • 6. Consider a horizontal spring with spring constant k. A block with mass m is pushed...

    6. Consider a horizontal spring with spring constant k. A block with mass m is pushed far to the left against the spring until the spring is compressed a distance r relative to its relaxed length. A second block, which is stationary and also has a mass m, is located to the right of the spring im rrm a) We release the first block from rest. Due to the force from the spring, it slides to the right and eventually...

  • Block A of mass, mA = 1.7 kg is shot from a spring device of spring...

    Block A of mass, mA = 1.7 kg is shot from a spring device of spring constant, k = 700 N/m along a frictionless horizontal surface. The initial compression of the spring is 0.300 m. The shot makes the block rise to another horizontal level at a height h= 1m above the first. On this horizontal it collides with another stationary block B of mass mB = 3.5 kg. The blocks stick together and encounter a rough surface. The blocks...

  • (2) A block of mass m = 2kg, slides on a horizontal surface and collides with...

    (2) A block of mass m = 2kg, slides on a horizontal surface and collides with a spring of force constant 200N/cm. The block compresses the spring 6.16cm from the un-stretched position. Mechanical energy in the amount of 200m) is dissipated due to friction as the block is brought to rest. What was the speed of the block at the instant of collision with the spring? (5-points)

  • A block of mass m -2.00 kg collides head on with a block of mass m-...

    A block of mass m -2.00 kg collides head on with a block of mass m- 10.0 kg initially at rest on a rough horizontal surface. The block m strikes m2 with a speed of 4.00 m/s. Immediately after the very brief inelastic collision, the 2.00 kg block bounces back with a speed of 1.20 m/s. Ignore the effect of friction during the collision. (a) 4pts.] Calculate the speed of the 10.0 kg block immediately after the collision. (b) 4...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT