Question

5. In certain circumstances, we can model the velocity of a falling mass subject to air resistance as - dv m7 = mg – kv?, whe

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given differ emtial equahion Zo) Thus v(Ut e(t)(-) m mg-ku2 (11) (Vot ) exp (2 t)+ (-) Sepoah ng vaniablen in (), we have = d

Add a comment
Know the answer?
Add Answer to:
5. In certain circumstances, we can model the velocity of a falling mass subject to air...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In (14) of Section 1.3 we saw that a differential equation describing the velocity v of...

    In (14) of Section 1.3 we saw that a differential equation describing the velocity v of a falling mass subject to air resistance proportional to the instantaneous velocity is dv dt where k> 0 is a constant of proportionality. The positive direction is downward (a) Solve the equation subject to the initial condition vo)o (b) Use the solution in part (a) to determine the limiting, or terminal, velocity of the mass c) If the distance s measured from the point...

  • Differential Equation 3.2.015

    A differential equation for the velocity v of a falling mass m subjected to air resistance proportional to the square of the instantaneous velocity ism(dv/dt)  = mg − kv2,k > 0 is a constant of proportionality. The positive direction is downward.(a) Solve the equation subject to the initial condition v(0) = v0.(b) Use the solution in part (a) to determine the limiting, or terminal, velocity of the mass.(c) If the distance s, measured from the point where the mass was released above ground, is related to velocity v by ds/dt = v(t), find an explicit expression for s(t) if...

  • 3) The velocity v(t) of a skydiver falling to the ground is governed by the equation...

    3) The velocity v(t) of a skydiver falling to the ground is governed by the equation m dv/dt mg-kv, where g is the acceleration due to gravity, and k>0 is the drag constant associated with air resistance a) Find the analytical solution for V(t), assuming v(0) 0 b) Find the limit of v(t) as t goes to infinity. This is known as the terminal velocity. c) Give a graphical analysis of this problem, and re-derive the formula for the terminal...

  • 3. In lecture, we derived the detailed time-dependence of the downward speed of a falling object...

    3. In lecture, we derived the detailed time-dependence of the downward speed of a falling object with a kv frictional force. Perform the analogous derivation of the time-dependence of the speed v(t) for a falling object subject to air drag, Farag-DV2 a. First use Newton's second law for a vertically falling mass m to find an equation relating dt to v(t). b. Integrate this equation. Let the initial velocity be v(0) = 0 at t = 0. c Make a...

  • Solve & Explain Steps Please. 6. Consider the problem of a free falling object with mass M. Assume that only gravity and air resistance act upon the object. (a) As a first model, let us suppos...

    Solve & Explain Steps Please. 6. Consider the problem of a free falling object with mass M. Assume that only gravity and air resistance act upon the object. (a) As a first model, let us suppose that the air resistance is proportional to the velocity v(t) of the object. Newton's second law of motion gives the DE M)go),20 More exactly, this is a first order linear DE with constant coefficients: Mw,(t) + ku(t) = Mg , t 2). Suppose that...

  • 2) (15PTS) A BODY of Mass in FALLING VERTICALLY IN SPACE ENCOUNTERS AIR RESISTANCE PROPORTIONAL TO...

    2) (15PTS) A BODY of Mass in FALLING VERTICALLY IN SPACE ENCOUNTERS AIR RESISTANCE PROPORTIONAL TO THE StU ARE OF ITS INSTANTANEOUS VELOCITY vlt) in meters/sec. ITS DIFFERENTIAL EQUATION OF MOTION IS m du = mg - kv²; vco)= Vo where Kyo is THE CONSTANT OF PRPORT, ON ALITY AND J is POSITIVE. FIND THE TERMINAL VELOCITY OF THE FALLING BODY ( t o )

  • (1 point) An object of mass 5 kg is given an upward initial velocity of 16...

    (1 point) An object of mass 5 kg is given an upward initial velocity of 16 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is -50, where v is the velocity of the object in m/sec. Assume gravitational constant is g = 9.8m/seca. Set up the differential equation for this scenario: v' = m/sec Solve the differential equation for the equation of motion: The equation is both...

  • This project discovers the free-falling velocity of skydivers before the parachutes are opened us...

    this project discovers the free-falling velocity of skydivers before the parachutes are opened using the laws of physics and calculus. you can ignore the wind in the horizontal direction. let m be the mass of a skydiver and the equipment, g be the acceleration due to gravity. the free-falling velocity of a skydiver, v(t), increases with time. the force due to the air resistance is correlated with the velocity, that is, Fr=kv^2, where k>0 if called the drag constant related...

  • feet per second and in miles per second 18 An object of mass m is moving...

    feet per second and in miles per second 18 An object of mass m is moving horizontally through a medium which resists the motion with a force that is a func- tion of the velocity; that is, d's dv f(v) dt =m dt2 where v = s(1) represent the velocity and at time , respectively. For example, v(t) and s position of the object think of a boat moving through the water. (a) Suppose that the resisting force is proportional...

  • When an object falls in Earth's gravitational field (think of a skydiver jumping from an airplane or a marble falling in a tank of oil)

    When an object falls in Earth's gravitational field (think of a skydiver jumping from an airplane or a marble falling in a tank of oil), it accelerates due to the force of gravity. If gravity were the only force acting on the object, then all objects-elephants and feathers alike would fall at the same rate. But gravity is not the only force present. Moving objects also experience resistance or friction from the surrounding medium; it would be air resistance for...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT