Question

Suppose a 500. mL flask is filled with 1.7 mol of

0 0
Add a comment Improve this question Transcribed image text
Answer #1

initial concentration of O2 = number of mol/volume in L
= 1.7/0.5
= 3.4 M

initial concentration of NO = number of mol/volume in L
= 1.1/0.5
= 2.2 M


N2 + O2 <------> 2NO
0 3.4 2.2 (initial)
x 3.4+x 2.2-2x (at equilibrium)

Kc = [NO]^2/ {[N2][O2]}
3.80 = (2.2-2x)^2 / {(x)(3.4+x)}
3.80*(x)(3.4+x) = (2.2-2x)^2
12.92*x + 3.80*x^2 = (4.84 + 4x^2 -8.8*x)
0.2*x^2 - 21.72*x + 4.84 = 0
solving for x we get,
x = 108 and x = 0.223 M
x can't be greater than 2.2. so x = 0.223 M

[NO] = 2.2 -2x
= 2.2-2*0.223
=1.8
Answer: 1.8 M

Add a comment
Know the answer?
Add Answer to:
Suppose a 500. mL flask is filled with 1.7 mol of O_2 and 1.1 mol of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose a 500 ml flask is filled with 0.50 mol of CO, 1.7 mol of H,0...

    Suppose a 500 ml flask is filled with 0.50 mol of CO, 1.7 mol of H,0 and 1.1 mol of H. The following reaction becomes possible: CO(g) +H,0(8) -CO2() +H,() The equilibrium constant K for this reaction is 0.244 at the temperature of the flask. Calculate the equilibrium molarity of 1,0. Round your answer to two decimal places.

  • Suppose a 500. mL flask is filled with 0.50 mol of H, and 1.7 mol of...

    Suppose a 500. mL flask is filled with 0.50 mol of H, and 1.7 mol of 12. The following reaction becomes possible: H2(g) +12(g) = 2HI(g) The equilibrium constant K for this reaction is 3.30 at the temperature of the flask. Calculate the equilibrium molarity of HI. Round your answer to two decimal places. xs ?

  • Suppose a 500 ml flask is filled with 1.6 mol of H, and 1.7 mol of...

    Suppose a 500 ml flask is filled with 1.6 mol of H, and 1.7 mol of HCl. The following reaction becomes possible: H2(g) +C12(g) + 2HCI(g) The equilibrium constant K for this reaction is 8.78 at the temperature of the flask. Calculate the equilibrium molarity of Cl,. Round your answer to two decimal places. OM x 6 ?

  • Suppose a 500. mL flask is filled with 0.20 mol of NO2, 1.7 mol of NO...

    Suppose a 500. mL flask is filled with 0.20 mol of NO2, 1.7 mol of NO and 0.80 mol of CO2. The following reaction becomes possible: NO2(g) +CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 0.457 at the temperature of the flask. Calculate the equilibrium molarity of NO. Round your answer to two decimal places. MM x 6 ?

  • Suppose a 500. ml flask is filled with 1.7 mol of Cl, and 2.0 mol of...

    Suppose a 500. ml flask is filled with 1.7 mol of Cl, and 2.0 mol of HCl. The following reaction becomes possible: H2(g) +C12(g) + 2HCl (8) The equilibrium constant K for this reaction is 7.05 at the temperature of the flask. Calculate the equilibrium molarity of HCl. Round your answer to two decimal places. x o ?

  • Suppose a 500 ml flask is filled with 1.2 mol of NO, and 0.40 mol of...

    Suppose a 500 ml flask is filled with 1.2 mol of NO, and 0.40 mol of NO the following reaction becomes possible: NO,() +NO(g) - 2NO(g) The equilibrium constant K for this reaction is 7.29 at the temperature of the flask Calculate the equilibrium molarity of NO. Round your answer to two decimal places

  • Suppose a 500. ml flask is filled with 0.90 mol of NO, and 0.80 mol of...

    Suppose a 500. ml flask is filled with 0.90 mol of NO, and 0.80 mol of NO. The following reaction becomes possible: NO2(g) + NO(g) + 2NO, (g) The equilibrium constant K for this reaction is 8.41 at the temperature of the flask. Calculate the equilibrium molarity of NO. Round your answer to two decimal places. IM x 3 ?

  • Suppose a 500. mL flask is filled with 1.6 mol of O, and 0.70 mol of...

    Suppose a 500. mL flask is filled with 1.6 mol of O, and 0.70 mol of NO. The following reaction becomes possible: N2(g)02g)2NO (g) The equilibrium constant K for this reaction is 9.43 at the temperature of the flask Calculate the equilibrium molarity of NO. Round your answer to two decimal places. Ом X

  • Suppose a 500 ml flask is filled with 1.7 mol of CO, 0.40 mol of H.O...

    Suppose a 500 ml flask is filled with 1.7 mol of CO, 0.40 mol of H.O and 1.9 mol of CO,The following reaction becomes possible: CO(e)+H,0(B) - CO (8)+H.) The equilibrium constant K for this reaction is 0.305 at the temperature of the flask. Calculate the equilibrium molarity of CO. Round your answer to two decimal places

  • Suppose a 500. mL flask is filled with 1.9 mol of Cl2, 0.70 mol of HCl...

    Suppose a 500. mL flask is filled with 1.9 mol of Cl2, 0.70 mol of HCl and 1.7 mol of CCI4. The following reaction becomes possible Cl2(g)+ CHCI3)HCI (g)+CCI4g) The equilibrium constant K for this reaction is 7.09 at the temperature of the flask. Calculate the equilibrium molarity of HCl. Round your answer to two decimal places

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT