Question

Suppose a 500. ml flask is filled with 0.90 mol of NO, and 0.80 mol of NO. The following reaction becomes possible: NO2(g) +

0 0
Add a comment Improve this question Transcribed image text
Answer #1

k = 8.41 volume of flook - 500 ml = 0.52 moles of No₂ = 0.90 mol. molarity of No = 0.gonal - 108M O.SL mobs of No = 0.80 mol.I ho = of to lep uspe Lens, ugnmbo hoo equilibrium molarity of No₂ = 28

Add a comment
Know the answer?
Add Answer to:
Suppose a 500. ml flask is filled with 0.90 mol of NO, and 0.80 mol of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose a 500. ml flask is filled with 0.90 mol of NO,, 0.10 mol of CO...

    Suppose a 500. ml flask is filled with 0.90 mol of NO,, 0.10 mol of CO and 0.50 mol of NO. The following reaction becomes possible: NO2(g) +CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 0.172 at the temperature of the flask. Calculate the equilibrium molarity of CO. Round your answer to two decimal places. IM xs ?

  • Suppose a 500.mL flask is filled with 0.80 mol of CO, 0.90 mol of CO2 and...

    Suppose a 500.mL flask is filled with 0.80 mol of CO, 0.90 mol of CO2 and 0.20mol of H2. The following reaction becomes possible: COg+H2Og--->CO2g+H2g The equilibrium constant K for this reaction is 6.70at the temperature of theflask.Calculate the equilibrium molarity of H2O. Round your answer to two decimal places.

  • Suppose a 500. mL flask is filled with 0.90 mol of OC1,, 0.20 mol of BroCl...

    Suppose a 500. mL flask is filled with 0.90 mol of OC1,, 0.20 mol of BroCl and 1.4 mol of BrCl. The following reaction becomes possible: Br2(g) +OC12(g) =BroCl(g) +BrCl(g) The equilibrium constant K for this reaction is 0.798 at the temperature of the flask. Calculate the equilibrium molarity of Br2. Round your answer to two decimal places. IM xs ?

  • Suppose a 500. mL flask is filled with 0.70 mol of NO2, 2.0 mol of NO...

    Suppose a 500. mL flask is filled with 0.70 mol of NO2, 2.0 mol of NO and 0.90 mol of CO2. The following reaction becomes possible: NO2(e)+Co(g)NO(g)+Co,(g) The equilibrium constant K for this reaction is 0.331 at the temperature of the flask. Calculate the equilibrium molarity of CO. Round your answer to two decimal places.

  • Suppose a 500. mL flask is filled with 0.20 mol of NO2, 1.7 mol of NO...

    Suppose a 500. mL flask is filled with 0.20 mol of NO2, 1.7 mol of NO and 0.80 mol of CO2. The following reaction becomes possible: NO2(g) +CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 0.457 at the temperature of the flask. Calculate the equilibrium molarity of NO. Round your answer to two decimal places. MM x 6 ?

  • Suppose a 500. ml flask is filled with 1.2 mol of Cl, and 0.80 mol of...

    Suppose a 500. ml flask is filled with 1.2 mol of Cl, and 0.80 mol of HCl. The following reaction becomes possible: H2(g) + Cl2(g) = 2HCl (g) The equilibrium constant K for this reaction is 0.419 at the temperature of the flask. Calculate the equilibrium molarity of Cl. Round your answer to two decimal places. xs ?

  • Suppose a 500 ml flask is filled with 1.2 mol of NO, and 0.40 mol of...

    Suppose a 500 ml flask is filled with 1.2 mol of NO, and 0.40 mol of NO the following reaction becomes possible: NO,() +NO(g) - 2NO(g) The equilibrium constant K for this reaction is 7.29 at the temperature of the flask Calculate the equilibrium molarity of NO. Round your answer to two decimal places

  • Suppose a 500. mL flask is filled with 1.4 mol of NO and 0.60 mol on...

    Suppose a 500. mL flask is filled with 1.4 mol of NO and 0.60 mol on NO2. The following reaction becomes possible: NO3(g) + NO(g) <--> 2NO2(g) The equilibrium constant K for this reaction is 0.162 at the temperature of the flask. Calculate the equilibrium molarity of NO. Round your answer to two decimal places.

  • Suppose a 500. mL flask is filled with 1.6 mol of O, and 0.70 mol of...

    Suppose a 500. mL flask is filled with 1.6 mol of O, and 0.70 mol of NO. The following reaction becomes possible: N2(g)02g)2NO (g) The equilibrium constant K for this reaction is 9.43 at the temperature of the flask Calculate the equilibrium molarity of NO. Round your answer to two decimal places. Ом X

  • Suppose a 250. mL flask is filled with 2.0 mol of NO and 0.30 mol of...

    Suppose a 250. mL flask is filled with 2.0 mol of NO and 0.30 mol of NO . The following reaction becomes possible: NO(g) + NO(g) - 2NO() The equilibrium constant K for this reaction is 0.662 at the temperature of the flask. Calculate the equilibrium molarity of NO2. Round your answer to two decimal places. x ?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT