Question

Suppose a 250. mL flask is filled with 2.0 mol of NO and 0.30 mol of NO . The following reaction becomes possible: NO(g) + NO
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Write the reaction as follows: NO;() + NO(g) → 2N0 (8) Equilibrium constant, K = 0.662 Volume of the flask = 250 mL Initi al

Substitute the corresponding values in equation (1) to calculate x. 0.662 = (1.2–2x) 02 (8.0+x) 0.662 ( 8.0x+x) = 1.44+4x2 -

Add a comment
Know the answer?
Add Answer to:
Suppose a 250. mL flask is filled with 2.0 mol of NO and 0.30 mol of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose a 250 ml flask is filled with 0.30 mol of I, and 1.5 mol of...

    Suppose a 250 ml flask is filled with 0.30 mol of I, and 1.5 mol of HI. The following reaction becomes possible: H2(g) +12(g)=2HI(g) The equilibrium constant K for this reaction is 0.532 at the temperature of the flask. Calculate the equilibrium molarity of 12. Round your answer to two decimal places. Пм x s ?

  • Suppose a 250. ml flask is filled with 0.10 mol of H and 0.30 mol of...

    Suppose a 250. ml flask is filled with 0.10 mol of H and 0.30 mol of I. The following reaction becomes possible: H2(g) +12(g) - 2HI(g) The equilibrium constant K for this reaction is 5.61 at the temperature of the flask. Calculate the equilibrium molarity of H. Round your answer to two decimal places. OM x ?

  • Suppose a 250. ml flask is filled with 1.7 mol of H, and 0.30 mol of...

    Suppose a 250. ml flask is filled with 1.7 mol of H, and 0.30 mol of Cly. The following reaction becomes possible: H2(g) + Cl2(g) - 2HCI(g) The equilibrium constant K for this reaction is 6.15 at the temperature of the flask. Calculate the equilibrium molarity of Cl2. Round your answer to two decimal places. OM xo?

  • Suppose a 250. ml flask is filled with 0.50 mol of CO, 0.60 mol of NO...

    Suppose a 250. ml flask is filled with 0.50 mol of CO, 0.60 mol of NO and 2.0 mol of CO2. The following reaction becomes possible: NO2(g) + CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 3.29 at the temperature of the flask. Calculate the equilibrium molarity of CO. Round your answer to two decimal places. IM x 6 ?

  • Suppose a 250. mL flask is filled with 1.8 mol of No₃ and 1.5 mol of NO₂.

    Suppose a 250. mL flask is filled with 1.8 mol of No₃ and 1.5 mol of NO₂. The following reaction becomes possible: No₃(g) + No(g) ⇄ 2No₂(g) The equilibrium constant K for this reaction is 3.20 at the temperature of the flask. Calculate the equilibrium molarity of No₂. Round your answer to two decimal places.

  • Suppose a 250 mL flask is filled with 1.6 mol of NO and 0.40 mol of...

    Suppose a 250 mL flask is filled with 1.6 mol of NO and 0.40 mol of NO2. The following reaction becomes possible: NO3 (g) + NO (g) = 2NO2 (g) The equilibrium constant K for this reaction is 0.253 at the temperature of the flask. Calculate the equilibrium molarity of NO2 . Round your answer to two decimal places.

  • Suppose a 250. mL flask is filled with 0.30 mol of H2 and 1.3 mol of...

    Suppose a 250. mL flask is filled with 0.30 mol of H2 and 1.3 mol of HI. The following reaction becomes possible: H2(8)+12)2HIg) The equilibrium constant K for this reaction is 0.254 at the temperature of the flask. Calculate the equilibrium molarity of H2. Round your answer to two decimal places. Ar

  • Suppose a 250. mL flask is filled with 2.0 mol of Cl, 0.20 mol of CHCl,...

    Suppose a 250. mL flask is filled with 2.0 mol of Cl, 0.20 mol of CHCl, and 1.7 mol of CCI4. The following reaction becomes possible: Cl2(g) + CHCI, (8) HCI(g) +CCI (8) The equilibrium constant K for this reaction is 0.701 at the temperature of the flask. Calculate the equilibrium molarity of HCl. Round your answer to two decimal places. OM 1 x s ?

  • Suppose a 500. mL flask is filled with 0.70 mol of NO2, 2.0 mol of NO...

    Suppose a 500. mL flask is filled with 0.70 mol of NO2, 2.0 mol of NO and 0.90 mol of CO2. The following reaction becomes possible: NO2(e)+Co(g)NO(g)+Co,(g) The equilibrium constant K for this reaction is 0.331 at the temperature of the flask. Calculate the equilibrium molarity of CO. Round your answer to two decimal places.

  • Suppose a 250. mL flask is filled with 2.0 mol of Br2, 1.1 mol of OCI,...

    Suppose a 250. mL flask is filled with 2.0 mol of Br2, 1.1 mol of OCI, and 0.80 mol of BroCl. The following reaction becomes possible: Br2(g) + Oci (g) Broci (g) + Brci(g) The equilibrium constant K for this reaction is 0.624 at the temperature of the flask. Calculate the equilibrium molarity of BroCl. Round your answer to two decimal places. Пм xs ?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT