Question

Suppose a 250 ml flask is filled with 0.30 mol of I, and 1.5 mol of HI. The following reaction becomes possible: H2(g) +12(g)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer Volume = 250mL = 250 x 10-3 L = 0.250L Initical Concentration. (12) = 0.30 mo! 0.250 Į = 1.2 mol = 1.2 M (HI). - - 3= 47? 0.53232 – 24% -0.63847 +36-O 7 3.4682- 24-6384 2 + 36 - 0 solving quadratis eah aut + bnto o е - bt /ь?-цас 29 a 24.638

Add a comment
Know the answer?
Add Answer to:
Suppose a 250 ml flask is filled with 0.30 mol of I, and 1.5 mol of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose a 250. ml flask is filled with 0.10 mol of H and 0.30 mol of...

    Suppose a 250. ml flask is filled with 0.10 mol of H and 0.30 mol of I. The following reaction becomes possible: H2(g) +12(g) - 2HI(g) The equilibrium constant K for this reaction is 5.61 at the temperature of the flask. Calculate the equilibrium molarity of H. Round your answer to two decimal places. OM x ?

  • Suppose a 250. mL flask is filled with 0.30 mol of H2 and 1.3 mol of...

    Suppose a 250. mL flask is filled with 0.30 mol of H2 and 1.3 mol of HI. The following reaction becomes possible: H2(8)+12)2HIg) The equilibrium constant K for this reaction is 0.254 at the temperature of the flask. Calculate the equilibrium molarity of H2. Round your answer to two decimal places. Ar

  • Suppose a 250. ml flask is filled with 1.7 mol of H, and 0.30 mol of...

    Suppose a 250. ml flask is filled with 1.7 mol of H, and 0.30 mol of Cly. The following reaction becomes possible: H2(g) + Cl2(g) - 2HCI(g) The equilibrium constant K for this reaction is 6.15 at the temperature of the flask. Calculate the equilibrium molarity of Cl2. Round your answer to two decimal places. OM xo?

  • Suppose a 250. mL flask is filled with 2.0 mol of NO and 0.30 mol of...

    Suppose a 250. mL flask is filled with 2.0 mol of NO and 0.30 mol of NO . The following reaction becomes possible: NO(g) + NO(g) - 2NO() The equilibrium constant K for this reaction is 0.662 at the temperature of the flask. Calculate the equilibrium molarity of NO2. Round your answer to two decimal places. x ?

  • Suppose a 250. ml flask is filled with 1.5 mol of Cl, and 1.3 mol of...

    Suppose a 250. ml flask is filled with 1.5 mol of Cl, and 1.3 mol of HCl. The following reaction becomes possible: H2(g) + Cl2(g) 2HCl (8) The equilibrium constant K for this reaction is 0.560 at the temperature of the flask. Calculate the equilibrium molarity of H. Round your answer to two decimal places. OM * 5 ?

  • Suppose a 250. mL flask is filled with 1.8 mol of No₃ and 1.5 mol of NO₂.

    Suppose a 250. mL flask is filled with 1.8 mol of No₃ and 1.5 mol of NO₂. The following reaction becomes possible: No₃(g) + No(g) ⇄ 2No₂(g) The equilibrium constant K for this reaction is 3.20 at the temperature of the flask. Calculate the equilibrium molarity of No₂. Round your answer to two decimal places.

  • Suppose a 500. mL flask is filled with 0.50 mol of H, and 1.7 mol of...

    Suppose a 500. mL flask is filled with 0.50 mol of H, and 1.7 mol of 12. The following reaction becomes possible: H2(g) +12(g) = 2HI(g) The equilibrium constant K for this reaction is 3.30 at the temperature of the flask. Calculate the equilibrium molarity of HI. Round your answer to two decimal places. xs ?

  • Suppose a 500. mL flask is filled with 1.5 mol of CO, 1.2 mol of NO...

    Suppose a 500. mL flask is filled with 1.5 mol of CO, 1.2 mol of NO and 1.0 mol of CO,. The following reaction becomes possible: NO2(g) +CO(g) = NO(g) + CO2(g) The equilibrium constant K for this reaction is 6.78 at the temperature of the flask. Calculate the equilibrium molarity of NO2. Round your answer to two decimal places. Пм x 6 ?

  • Suppose a 250. mL flask is filled with 2.0 mol of Br2, 1.1 mol of OCI,...

    Suppose a 250. mL flask is filled with 2.0 mol of Br2, 1.1 mol of OCI, and 0.80 mol of BroCl. The following reaction becomes possible: Br2(g) + Oci (g) Broci (g) + Brci(g) The equilibrium constant K for this reaction is 0.624 at the temperature of the flask. Calculate the equilibrium molarity of BroCl. Round your answer to two decimal places. Пм xs ?

  • Suppose a 250. mL flask is filled with 0.50 mol of H20, 1.0 mol of Co2...

    Suppose a 250. mL flask is filled with 0.50 mol of H20, 1.0 mol of Co2 and 1.5 mol of H2. The following reaction becomes possible cog)+H20(g)Co()+H28) The equilibrium constant K for this reaction is 4.10 at the temperature of the flask Calculate the equilibrium molarity of H20. Round your answer to two decimal places.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT