Question

Problem 2. For the following system described by the difference equation where y[-1-y[-2] = 0 and x[n] = 2u[n]: a. Draw a block diagram of this system using delays, multipliers, and adders b. Determine the impulse response of the system, h[n], and plot it in MATLAB for n = 0, 1, ,20. (Hint: use Eulers Formula to simplify) c. Is this system stable? d. Determine the initial conditioned repsonse, in. e. Find the total response of the system, yn nln. In this case you must properly set up the convolution 나. sum for y[n], but do not simplify it.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Problem 2. For the following system described by the difference equation where y[-1-y[-2] = 0 and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A causal discrete-time system is described by the following difference equation: Use Matlab to write a...

    A causal discrete-time system is described by the following difference equation: Use Matlab to write a script to complete the following tasks. Turn in the output created by the Matlab "publish" utility. (a) Compute and plot the impulse response h[n], 0くn 〈 50. Use the function h=imp2(b, a , N ) to find the impulse response, and use the stem ) function to create the plot. (b) Let x[n] be defined by (n - 15)2 0n K 30 x[n] elsewhere...

  • A linear time invariant system has an impulse response given by h[n] = 2(-0.5)" u[n] –...

    A linear time invariant system has an impulse response given by h[n] = 2(-0.5)" u[n] – 3(0.5)2º u[n] where u[n] is the unit step function. a) Find the z-domain transfer function H(2). b) Draw pole-zero plot of the system and indicate the region of convergence. c) is the system stable? Explain. d) is the system causal? Explain. e) Find the unit step response s[n] of the system, that is, the response to the unit step input. f) Provide a linear...

  • 2) An LTI DT system is defined by the difference equation: y[n] = -0.4yIn - 1]...

    2) An LTI DT system is defined by the difference equation: y[n] = -0.4yIn - 1] + x[n]. a) Derive the impulse response of the system. (2 pt) b) Determine if the system is BIBO stable. (1 pt) c) Assuming initial conditions yl-1) = 1, derive the complete system response to an input x[n] = u[n] - u[n-2), for n > 0.(2 pt) d) Derive the zero-state system response to an input z[n] = u[n] - 2u[n - 2] +...

  • P2.19 A linear and time-invariant system is described by the difference equation y(n) 0.5y(n 10.25y(n 2)-x(n)...

    P2.19 A linear and time-invariant system is described by the difference equation y(n) 0.5y(n 10.25y(n 2)-x(n) + 2r(n - 1) + r(n -3) 1. Using the filter function, compute and plot the impulse response of the system over 0n100. 2. Determine the stability of the system from this impulse response. 3. If the input to this system is r(n) 5 3 cos(0.2Tm) 4sin(0.6Tn)] u(n), determine the 200 using the filter function response y(n) over 0 n

  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • Discrete Time Signal Processing Question 1. Consider an IIR filter A(1-2-1 cos ω0) 1-2cos ω02-1+2...

    Discrete Time Signal Processing Question 1. Consider an IIR filter A(1-2-1 cos ω0) 1-2cos ω02-1+2 I. Compute its impulse response using the difference equation with an impulse signal δ(n) as the input. Use trigonometric identities to simplify the result as much as you can 2. Draw the diagram showing the implementation of this filter in terms of adders, delays and multipliers Note: The IIR filter above generates a cosinusoidal signal when an impulse signal is applied at its input.] Question...

  • matlab please matlab please (4) Consider the system described by the following difference equation y(n)1.77y(n-1)-0.81y(n 2)a(n)-...

    matlab please matlab please (4) Consider the system described by the following difference equation y(n)1.77y(n-1)-0.81y(n 2)a(n)- 0.5(n -1) (a) Assuming a unit-step input, and using a long enough section of the input constant output y(n) is observed for large n, hence plot the output and determine the value of this constant called G so that a Note: G, y(n) for n0o. (b) Determine and plot the transient response given by: n(n) = y(n)- Go (c) Find the energy of the...

  • 2. A system is described by the following difference equation n]1.5y[n0.56y[n -2]+x{n-0.2x{n-] a) Find the transfer fun...

    2. A system is described by the following difference equation n]1.5y[n0.56y[n -2]+x{n-0.2x{n-] a) Find the transfer function of the system b) Let xn]un]. Compute an analytical expression for the response y[n]. Use Matlab to calculate the coefficients c) Simulate and plot the response using Matlab.(stem plot) Generate 50 points. (Matlab: x ones(1,50)); 2. A system is described by the following difference equation n]1.5y[n0.56y[n -2]+x{n-0.2x{n-] a) Find the transfer function of the system b) Let xn]un]. Compute an analytical expression for...

  • Consider a DT system with input x[n] and output y[n] described by the difference equation 4y[n+1]...

    Consider a DT system with input x[n] and output y[n] described by the difference equation 4y[n+1]+y[n-1]=8x[n+1]+8x[n] 73 Consider a DT system with input xin and output yin] described by the difference equation (a) What is the order of this system? (b) Determine the characteristic mode(s) of the system (c) Determine a closed-form expression for the system's impulse response hln]. 73 Consider a DT system with input xin and output yin] described by the difference equation (a) What is the order...

  • For the causal filter below y(n) x(n) -20 eja 1-0.8e10 Write the difference equation(show the equation...

    For the causal filter below y(n) x(n) -20 eja 1-0.8e10 Write the difference equation(show the equation clearly and define coefficients) Give and plot the frequency response magnitude (show the equation clearly) Compute and plot the impulse response using MATLAB d a. b. c. Use MATLAB to determine steady state response due to x(n)-u(n) Write a MATLAB program to compute and plot the frequency response of the overall system. Give plots in dB and the program e. For the causal filter...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT