Question

P2.19 A linear and time-invariant system is described by the difference equation y(n) 0.5y(n 10.25y(n 2)-x(n) + 2r(n - 1) + r(n -3) 1. Using the filter function, compute and plot the impulse response of the system over 0n100. 2. Determine the stability of the system from this impulse response. 3. If the input to this system is r(n) 5 3 cos(0.2Tm) 4sin(0.6Tn)] u(n), determine the 200 using the filter function response y(n) over 0 n

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Matlab Script:

b = [1 2 0 1];
a = [1 -0.5 0.25];

xn = [1 zeros(1,100)]; %impulse input where it is 1 only at n=0

n = 0:100;
hn = filter(b,a,xn);

stem(n,hn);

b. As we can see from above figure that h[n] is approaching zero as n increasing hence the system is stable

n = 0:200;
xn = 5+(3*cos(0.2*pi*n))+(4*sin(0.6*pi*n));
figure();

yn = filter(b,a,xn);
stem(n,yn);

Add a comment
Know the answer?
Add Answer to:
P2.19 A linear and time-invariant system is described by the difference equation y(n) 0.5y(n 10.25y(n 2)-x(n)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • uestion A causal, linear time-invariant system is excited with an input x (n) described as x(n)...

    uestion A causal, linear time-invariant system is excited with an input x (n) described as x(n) 3u(n) with the output y(n) of the system as follows: 7l n) -2"u(n) y(n)- a) Determine z-transform X(z) and Y (z) (4 marks) b) Determine the transfer function H(z). (3 marks) Based on (b), determine the impulse response h(n). Based on (b), sketch the z-plane for the transfer function of the system Based on (d), determine the stability of the system and discuss the...

  • A linear time invariant system has an impulse response given by h[n] = 2(-0.5)" u[n] –...

    A linear time invariant system has an impulse response given by h[n] = 2(-0.5)" u[n] – 3(0.5)2º u[n] where u[n] is the unit step function. a) Find the z-domain transfer function H(2). b) Draw pole-zero plot of the system and indicate the region of convergence. c) is the system stable? Explain. d) is the system causal? Explain. e) Find the unit step response s[n] of the system, that is, the response to the unit step input. f) Provide a linear...

  • 1: A linear time-invariant system is described by the FIR difference equation (a) Write down the...

    1: A linear time-invariant system is described by the FIR difference equation (a) Write down the impulse response hin) l, the frequency response H(e), and the system function H(a) of this system. 10 points) (b) Write down the expressions for the magnitude |H(e)) and the angle L) of the frequeney response) Sketch |H(e) and LM(e) with respect to . 10 points (c) Is this filter low-pass, high-pass, or band-pass? Why? [5 points) (d) Given the input z[n] = 6cos (03m...

  • Problem 3 (25 points A linear time-invariant filter is described by the difference equation a. (5)...

    Problem 3 (25 points A linear time-invariant filter is described by the difference equation a. (5) Write an expression for the frequency response of the system, H(e/). b. (5) Sketch the magnitude response of the system as a function of frequency over Nyquist interval. (5) Determine the output when the input is xln] 5+2cos(0.5 sequence e. (5) Determine the output when the input is the unit-step sequence uln.

  • solve all 22. The input-output relationship for a linear, time-invariant system is described by differential equation...

    solve all 22. The input-output relationship for a linear, time-invariant system is described by differential equation y") +5y'()+6y(1)=2x'()+x(1) This system is excited from rest by a unit-strength impulse, i.e., X(t) = 8(t). Find the corresponding response y(t) using Fourier transform methods. 23. A signal x(1) = 2 + cos (215001)+cos (210001)+cos (2.15001). a) Sketch the Fourier transform X b) Signal x() is input to a filter with impulse response (1) given below. In each case, sketch the associated frequency response...

  • Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n...

    Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n] and output y[n] described by bx[n-21- ax[n-3 for n 2 0, where a and b are real-valued positive coefficients. A) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? B) What are the initial conditions and their values? Why? C) Draw the block diagram of the filter relating input x[n] and output y[n] D) Derive a formula for the transfer function in...

  • The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the...

    The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system. LTI System #1 hi[n] LTI System #2 h21n] r[n] iIn] yInl Figure 1: Cascade connection of two LTI systems (a) Suppose that System #l is a blurring filter described by the impulse response 0 "=0.1.2.3.4.5 n>5 and System #2 is described...

  • 6. (15) Consider the following causal linear time-invariant (LTT) discrete-time filter with input in and output...

    6. (15) Consider the following causal linear time-invariant (LTT) discrete-time filter with input in and output yn described by y[n] = x[n] – rn - 2 for n 20 . Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? • What are the initial conditions and their values for this causal and linear time-invariant system? Why? • Draw the block diagram of the filter relating input x[n) and output y[n] • Derive a formula for...

  • a causal discrete time LTI system is implemented using the difference equation y(n)-0.5y(n-1)=x(n)+x(n-1) where x(n) is...

    a causal discrete time LTI system is implemented using the difference equation y(n)-0.5y(n-1)=x(n)+x(n-1) where x(n) is the input signal and y(n) the output signal. Find and sketch the impulse response of the system

  • Question 2 A linear time-invariant (LTI) system has its response described by the following second-order differential...

    Question 2 A linear time-invariant (LTI) system has its response described by the following second-order differential equation: d'y) 3-10))-3*0)-6x0) dy_hi dx(t) where x() is the input function and y(t) is the output function. (a) Determine the transfer function H(a) of the system. (b) Determine the impulse response h(t) of the system.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT